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Summary

From millions of social media posts, to decades of legal text - more
and more relevant information is hidden in digital text corpora that are
too large for manual analyses. The key promise of machine learning is
to automate parts of the manual analysis process. One popular method
is supervised machine learning for text classification, where a model is
trained on examples of manually categorized texts and learns to identify
these categories in new texts. Computational social scientists have used
this method to create measurements of concepts such as emotions, topics
or stances at scale.

While measurement with supervised machine learning is established
in the social science literature, there are important limitations that
reduce the usefulness of established methods for many practical applica-
tions. First, these methods require large amounts of balanced training
data to work well. Researchers, however, often only have limited re-
sources for creating training data and need to tailor new data to each
new research question. Second, older algorithms struggle with multilin-
gual data. Researchers, however, need measurements that are equally
valid for different cultures and languages. Third, they are susceptible to
learning shortcuts and biased patterns from their training data, reducing
the validity of measurements across social groups. Fourth, they can be
difficult to use, making them only accessible to specialised researchers.

This thesis demonstrates how a recent innovation from the natural
language processing literature can address these limitations: instruction-
based language models. Chapter 2 shows how this type of model can
reduce the required training data by a factor of ten compared to previous
algorithms, while achieving the same level of performance across eight
tasks. Chapter 3 demonstrates how these models require less than 2000
examples in two languages to create valid measurements across eight
other languages and ten other countries. Chapter 4 shows how these
models are more robust against group-specific biases. Their average
test-set performance only decreases marginally when trained on biased
data in experiments across nine groups from four datasets. Chapter 5
explains how these models can be universal classifiers that can learn any
number of classification tasks simultaneously in tests across 33 datasets
with 389 classes.
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Chapter 1

Introduction

“Training from a blank slate deprives our models of experience and the ability
to interpret context. Ultimately, in order to come closer to the elusive goal of
true natural language understanding, we need to equip our models with as

much relevant knowledge and experience as possible.”
(Ruder, 2019, p. 258-259)

Machine learning is marked by significant achievements and persis-
tent challenges. Steady methodological progress has led to increasingly
capable machines, exceeding expectations at incredible speed (Devlin,
Chang, Lee, & Toutanova, 2019; LeCun, Bengio, & Hinton, 2015; Ope-
nAl, 2023b). When it comes to applying machine learning to practical
problems, however, researchers often struggle with issues of generalisa-
tion and validity. Success on machine learning benchmarks does not
necessarily translate to success in practical applications in other disci-
plines (Bowman & Dahl, 2021; Kapoor et al., 2023; Liao, Taori, Raji, &
Schmidt, 2021).

One such practical application is machine learning as a measurement
tool in the computational social sciences. From a social science per-
spective, machine learning is not a purpose in itself, but only a tool for
creating measurements. Machine learning is useful if it helps create valid
measurements of concepts, such as emotions, topics, or stances. These
measurements, in turn, can then inform explanatory models of complex
social phenomena from elections to war (Benoit, 2020; Egami, Fong,
Grimmer, Roberts, & Stewart, 2022; Grimmer & Stewart, 2013; Shah,
Cappella, & Neuman, 2015; Theocharis & Jungherr, 2021; Van Atteveldt
& Peng, 2021; Wallach, 2018).

A particularly relevant computational measurement tool is supervised



machine learning for text classification. In a supervised machine learning
project, researchers start by defining concepts they are interested in
measuring, for example four categories of emotions in social media posts.
They then manually categorize example texts into these categories
(classes) and train a classification model on these examples (training
data). If this process is implemented well, the trained classification model
learns to identify these classes in texts it has not seen before (test data).
The classifier can then be used to predict the proportions of text in a
large corpus that express these four emotions (the measurement). The
resulting measurement can then be one variable in a broader explanatory
model of a social phenomenon such as voter behaviour during elections
(Grimmer, Roberts, & Stewart, 2021).

While measurement with supervised machine learning is established
in the social science literature, there are important limitations that
reduce the usefulness of established methods for many practical appli-
cations (Baden, Pipal, Schoonvelde, & van der Velden, 2022). First,
these methods require large amounts of balanced training data to work
well. Researchers, however, often only have limited resources for creat-
ing training data and need to tailor it to each new research question.
Second, older algorithms struggle with multilingual data. Comparative
researchers, however, need measurements that are equally valid for dif-
ferent countries and cultures. Third, they are susceptible to learning
shortcuts and biased patterns from their training data, reducing the
validity of measurements across social groups. Fourth, both older and
newer models can be difficult to use in practice, making them only
accessible to specialized researchers.

This thesis demonstrates how a recent innovation from the natural
language processing literature can address these limitations: instruction-
based language models. Chapter 2 shows how this type of model can
reduce the required training data by a factor of ten compared to previous
algorithms, while achieving the same level of performance across eight
tasks. Chapter 3 demonstrates how these models require less than 2000
examples in two languages to create valid measurements across eight
other languages and ten other countries. Chapter 4 shows how these
models are more robust against group-specific biases. Their average
test-set performance only decreases by 0.4% when trained on biased
data in experiments across nine groups from four datasets. Chapter 5
explains how these models can be universal classifiers that can learn any
number of classification tasks simultaneously in tests across 33 datasets



with 389 classes.

A key motivation for starting this thesis project was to explore
innovations from machine learning research and to make them useful
for addressing practical problems. In an attempt to make my research
more broadly accessible, I have freely shared all my models and made
them compatible with easy-to-use open-source libraries. On the day of
submission of this thesis, my open-source models created during this
endeavour have been downloaded more than 65 million times.!

1.1 Instruction-based models and transfer learn-
ing

The main innovation I investigate are instruction-based language models
(Brown et al., 2020; Lou, Zhang, & Yin, 2023; Sanh et al., 2022; Wei et al.,
2022). Instruction-based language models have two main characteristics.

First, they leverage the full spectrum of transfer learning by accu-
mulating both prior language knowledge and task knowledge in their
parameters (Ruder, 2019). Older classifiers like support vector machines
or logistic regression start training without any prior knowledge. They
need to learn the semantic difference between the words “war”, “attack”
and “tree” from their training data from scratch (no prior language
knowledge). The only source of information for a new task is their
training data (no prior task knowledge). Newer models like BERT gain
language knowledge through pre-training (Devlin et al., 2019). They
have an internal representation of the meaning of words but still need to
learn any new task from their fine-tuning data from scratch (no useful
task knowledge). Instruction-based language models, on the other hand,
are (pre-)trained on a universal task such as text generation (Radford et
al., 2019; Raffel et al., 2020) or Natural Language Inference, NLI (Dagan,
Glickman, & Magnini, 2006; Yin, Hay, & Roth, 2019). These tasks are
so general, that any specific task can be reformatted into the universal
task. Being (pre-)trained on universal tasks enables instruction-based
language models to learn new tasks without having to relearn task-
specific parameters from scratch. They start with both useful language
and task knowledge.

Second, these models can process instructions as an additional input.
An instruction (or “prompt”) is a natural language description of a task,

L& nttps://huggingface.co/MoritzLaurer
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such as “Classify this text into one of two categories: positive or negative”.
Standard classifiers like BERT-base or support vector machines are not
designed to process instructions and can only process two inputs: (1)
The text to be analysed; (2) numeric labels for the desired output. By
design, these standard models do not receive explicit information about
their task and need to find any pattern in the input text that helps
them correctly predict the numeric label. In contrast, instruction-based
models can process instructions as a third input. The most prominent
examples are probably the GPT models (Radford, Narasimhan, Salimans,
& Sutskever, 2018). To fine-tune a GPT model for stance classification,
for example, the inputs could be (1) a news article to be analysed, (2)
a label like “positive” converted to numeric token IDs as the desired
classification output, and (3) an instruction such as “Is this text positive
or negative towards political elites?”. This third input enables the model
to learn new tasks better. Similar principles apply to other instruction-
based language models like BERT-NLI, PET, or prompted RTD, which
all process these three types of inputs in different ways (Lou et al., 2023;
Schick & Schiitze, 2021a; Xia, Artetxe, Du, Chen, & Stoyanov, 2022).

To understand the fundamental limitation of supervised machine
learning without instructions, consider how difficult the standard su-
pervised training procedure is even for humans. Imagine the following
scenario: You want to measure eight types of emotions in a large corpus
of a million social media posts. You recruit crowd workers to help you
manually analyse these texts. To teach them your task, you send them
an email with a few hundred example texts that you have categorized
into your eight emotions of interest. In the email you send, the category
for each text is only indicated by a number in the text’s title. You do
not provide any explanation of what the categories are about. Would
the average crowd worker understand that you want to measure eight
specific types of emotions based on a specific psychological theory only
based on a few hundred texts and numbers?

While sending numbered texts without any explanations would obvi-
ously be a bad process for human learning, it is effectively how standard
supervised machine learning works. Classification models tradition-
ally only receive two inputs: example texts and meaningless numeric
labels linked to each text, without any additional information about
the meaning of the labels. The models are then trained to find any
patterns in this training data that help it predict the correct numeric
labels. Human annotators, by contrast, always receive a short codebook



with clear definitions and annotation instructions in addition to a few
examples. In an attempt to model the human learning process more
closely, instruction-based models are designed to ingest this third input:
verbalized definitions of the task or classes of interest, i.e. instructions.
Several instruction-based models exist (Lou et al., 2023). This thesis
focuses on one specific type: BERT-NLI (Yin et al., 2019; Yin, Rajani,
Radev, Socher, & Xiong, 2020).2 Its encoder-only architecture and
training objectives are specialized for text classification, providing a
good trade-off between model size and performance for measurement with
text classification. While generative language models like T5 and GPT
have capabilities beyond text classification, these capabilities are not
necessary for classification (Schick & Schiitze, 2021a; H. Xu, Lin, Zhou,
Zheng, & Yang, 2023) and require infrastructure that is often beyond
academic resources (at the time of writing). As many measurement
tasks only require text classification, this thesis therefore only focuses
on resource-efficient encoder-only models specialized in classification.

1.2 Dissertation overview

I develop my main arguments in four empirical chapters. Each chapter
addresses one of the four key limitations of older algorithms outlined
above and demonstrates how instruction-based models can help alleviate
these limitations.

Chapter 2: How can we reduce data requirements for supervised text
classification?

This chapter empirically demonstrates how the accumulation of both
language and task knowledge in language models decreases the training
data requirements for learning new social science tasks.

Early machine learning models were equations that had no prior
knowledge at all (Pan & Yang, 2010; Ruder, 2019). Based on early work

%While there are many variants of BERT (the original BERT, RoBERTa, Distil-
BERT, AIBERT, DeBERTa etc.) their differences are less relevant for my research.
They are all only slightly different encoder models that can be fine-tuned on down-
stream tasks. Their general design as encoders is the same (Yang et al., 2023). For
simplicity, I use the term “BERT” to refer to such pre-trained encoder-only models.
Any such model could be tuned to become a universal “BERT-NLI” model. The
exact underlying models are specified in the respective chapters. The main base
model used in this thesis is DeBERTaV3, an improved version of the original BERT
(P. He, Gao, & Chen, 2021).



in the year 2000, word embeddings provided a way to create and store a
form of language knowledge in vector representations (Bengio, Ducharme,
& Vincent, 2000; Mikolov, Sutskever, Chen, Corrado, & Dean, 2013).
Since 2018, researchers started integrating language knowledge deeper
into models like ULMFiT, ELMo or BERT (Devlin et al., 2019; Howard
& Ruder, 2018; Peters et al., 2018). The main limitation of these models
is, however, that they still need to learn any new task from scratch.
Since then, researchers have developed techniques that also leverage a
model’s prior task knowledge, re-using all parameters from pre-training
or pre-fine-tuning on a universal task like next-token-prediction or NLI
(Radford et al., 2019; Raffel et al., 2020; Yin et al., 2019). While the
advantages of newer models are relatively well understood for benchmark
tasks in Natural Language Processing (NLP), this chapter demonstrates
that these models can also address key challenges of social sciences tasks.

Social science tasks are characterized by challenges that arise when
machine learning is only used as a (measurement) tool and is not the
object of research itself. These tasks are characterized (a) by higher
class imbalance reflecting the class distribution in real-world corpora;
(b) by limited quantities of training data due to resource constraints
as machine learning is only one aspect of a broader project; and (c)
by types of classes that are informed by social scientist’s explanatory
research interests. This chapter compares test-set performance of four
types of classification models across eight different social science tasks.
Each model is trained on different training data samples increasing from
0 to 10000 texts from real-world, class-imbalanced corpora.

FEmpirical results show that the more prior knowledge a model uses,
the better its performance on (imbalanced) data. Across these eight
tasks, the BERT-NLI model fine-tuned on 100 to 2,500 texts performs on
average 10.7 to 18.3 percentage points better than classical models that
do not use transfer learning. As more data is provided, the performance
difference decreases. The main practical conclusion for social science
researchers is that newer models using more transfer learning and in-
structions can help save significant training data annotation resources
during the measurement process.

Chapter 3: How can we derive valid measurement from multilingual
texts?

This chapter investigates how multilingual language models and
machine translation can be used to analyse multilingual texts.



Most computational text analysis methods are designed for English
text (Baden et al., 2022). Comparative social scientists, however, often
need to measure concepts across different languages and cultures. There
are two main types of solutions to this problem. First, machine transla-
tion to English can be used to align all texts in the same language. This
has long been the main solution used in the social sciences (de Vries,
Schoonvelde, & Schumacher, 2018; Lucas et al., 2015). Second, newer
multilingual transfer learning approaches create multilingual language
knowledge in models, enabling them to ingest texts in multiple different
languages simultaneously (Conneau et al., 2020; Conneau & Lample,
2019). Empirical evidence for the advantages and disadvantages of these
different approaches in social science research is limited.

This chapter empirically compares machine translation to multi-
lingual models, and combinations of both on two datasets with texts
in 12 languages from 27 countries. In a first step, I compare test-set
performance of four different types of models in both a high-resource
and a low-resource multilingual setting. In a second step, I go beyond
test-set validation and conduct hypothesis validation and correlation
validation in a task measuring stances towards immigration across 10
political party families from 14 countries.

I find that the instruction-based BERT-NLI performs best among
four model types, especially when little data is available. It performs
best, both in terms of test-set and correlation validation. I do not
find a very clear performance difference between multilingual models
or English models combined with machine translation. I conclude
that machine translation to English is probably the best approach for
analysing multilingual texts, as it enables the use of newer models
and makes manual validation easier for teams with limited language
knowledge. Combining open-source machine translation with an English
BERT-NLI model trained on 1674 texts from German and English can
produce valid measurements on hundreds of thousands of texts from
eight other languages and ten other countries. While these results are
limited to two datasets, they indicate that future multilingual case
studies can use machine translation to simplify the annotation process
and could result in valid measurements with less than 2000 texts from a
few countries.

Chapter 4: How robust are different models against group-specific
biases?

This chapter investigates the robustness of different classification
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models against group-specific biases in the training data, and theorizes
about a systematic link between measurement validity and instruction-
based models.

While (large) language models tout higher performance than classical
models, there is a relevant concern that they behave like “stochastic
parrots”, reproducing biased patterns from their training data instead of
properly measuring the concept they are intended to measure (Bender,
Gebru, McMillan-Major, & Mitchell, 2021). These hidden biases can be
particularly problematic for comparative social science research, where
researchers want to compare different social groups (e.g. countries,
parties, milieus) and need models to perform equally well on all group
members (Baden et al., 2022).

This chapter investigates this challenge in a comparative analysis
across nine groups, four datasets and three types of models under biased
and unbiased conditions. I train 312 text classifiers and analyse their
robustness against group-specific biases and the validity of their outputs.
I find that all types of models are susceptible to learning group-specific
language patterns and that fine-tuning on biased data (from one group)
reduces performance on representative test sets (from all groups). On
average, however, these effects are surprisingly small. In particular when
models receive instructions as an additional input, they become more
robust against biases from the fine-tuning data. Test-set validation
and statistical bias tests indicate that they are best at producing valid
measurements across different groups. The instruction-based BERT-NLI
sees its average test-set performance drop by only 0.4% F1 macro when
trained on biased data compared to random data. Its probability of
making an error on groups it has not seen during training increases only

by 0.8%.
Chapter 5: How can we build more efficient universal text classifiers?

The preceding chapters focus on making models better on a range
of different individual tasks. This chapter investigates the universality
of BERT-NLI, making it better at multiple tasks simultaneously and at
new tasks it has not seen during training.

Generative large language models, perhaps most famously ChatGPT,
have experienced an impressive boom in 2023 thanks to their ability
to do many different text-related tasks with little to no task-specific
fine-tuning (Chowdhery et al., 2022; OpenAl, 2023b; Touvron et al.,
2023). These models pay their strong capabilities with resource and



infrastructure requirements beyond reach for academics. Moreover, using
trillion parameter text generators for measurement projects that only
require text classification is disproportionate.

This chapter demonstrates that smaller encoder-only models like
BERT-NLI can be universal classifiers while being comparatively efficient
and accessible. While only limited to text classification, they can learn
any number of classification tasks simultaneously and generalize to
unseen tasks without fine-tuning. This hands-on chapter guides the
reader through several Jupyter notebooks from data preparation and
cleaning, to training and evaluation of universal BERT-NLI models. The
resulting model is trained on 33 datasets with 389 classes simultaneously.
Its performance at doing new classification tasks without having seen
training data (zeroshot classification) increases by 9.4% compared to
NLI-only models. It can do inference on a laptop and the training can
be reproduced in the browser for around 50 Euros on Google Colab.

Beyond individual chapters, the work on this thesis was always driven
by the spirit of knowledge sharing and open-source (Van Atteveldt,
Strycharz, Trilling, & Welbers, 2019). For all four empirical chapters,
the full reproduction code is openly available on GitHub, along with
materials from workshops and tutorials.? All models are freely shared
online.*

3https://github.com/MoritzLaurer
“https://huggingface.co/MoritzLaurer
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Chapter 2

Less Annotating, More
Classifying

Addressing the Data Scarcity Issue of
Supervised Machine Learning with Deep
Transfer Learning and BERT-NLI

Abstract. Supervised machine learning is an increasingly popular
tool for analysing large political text corpora. The main disadvantage
of supervised machine learning is the need for thousands of manually
annotated training data points. This issue is particularly important in the
social sciences where most new research questions require new training
data for a new task tailored to the specific research question. This paper
analyses how deep transfer learning can help address this challenge by
accumulating ‘prior knowledge’ in language models. Models like BERT
can learn statistical language patterns through pre-training (‘language
knowledge’), and reliance on task-specific data can be reduced by training
on universal tasks like Natural Language Inference (‘task knowledge’).
We demonstrate the benefits of transfer learning on a wide range of eight
tasks. Across these eight tasks, our BERT-NLI model fine-tuned on 100
to 2500 texts performs on average 10.7 to 18.3 percentage points better
than classical models without transfer learning. Our study indicates
that BERT-NLI fine-tuned on 500 texts achieves similar performance
as classical models trained on around 5000 texts. Moreover, we show
that transfer learning works particularly well on imbalanced data. We
conclude by discussing limitations of transfer learning and by outlining
new opportunities for political science research.

Paper published as: Laurer, M., Van Atteveldt, W., Casas, A., & Welbers, K.
(2023). Less Annotating, More Classifying: Addressing the Data Scarcity Issue of
Supervised Machine Learning with Deep Transfer Learning and BERT-NLI. Political
Analysis, 1-33. https://doi.org/10.1017/pan.2023.20
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2.1 Introduction

From decades of political speeches to millions of social media posts - more
and more politically relevant information is hidden in digital text corpora
too large for manual analyses. The key promise of computational text
analysis methods is to enable the analysis of these corpora by reducing
the need for expensive manual labour. These methods help researchers
extract meaningful information from texts through algorithmic support
tools and have become increasingly popular in political science over the
past decade (Benoit, 2020; Grimmer & Stewart, 2013; Lucas et al., 2015;
Van Atteveldt, Trilling, & Calderon, 2022; Wilkerson & Casas, 2017).

Supervised machine learning is one such algorithmic support tool
(Osnabriigge, Ash, & Morelli, 2021). Researchers manually create a set
of examples for a specific task (training data) and then train a model to
reproduce the task on unseen text. The main challenge of this approach
is the creation of training data. Supervised models require relatively
large amounts of training data to obtain good performance, making them
a “nonstarter for many researchers and projects” (Wilkerson & Casas,
2017). Lack of data is particularly problematic in the social sciences
where most new research questions entail a new task (task diversity)
and some concepts of interest are only present in a small fraction of a
corpus (data imbalance). Compared to the Natural Language Processing
(NLP) literature, for example, political scientists are less interested in
recurring benchmark tasks with rich and artificially balanced data. The
ensuing data scarcity problem is probably an important reason for the
greater popularity of unsupervised approaches in the social sciences.
Unsupervised approaches are difficult to tailor to specific tasks and are
harder to validate, but they do not require training data (Denny &
Spirling, 2018; Miller, Linder, & Mebane, 2020).

This paper argues that this data scarcity problem of supervised
machine learning can be mitigated through deep transfer learning. The
main assumption of transfer learning is that machine learning models can
learn ‘language knowledge’ and ‘task knowledge’ during a pre-training
phase and store this ‘knowledge’ in their parameters (Pan & Yang, 2010;
Ruder, 2019).! During a subsequent fine-tuning phase, they can then

'Note that we only use the word ‘knowledge’ to help create an intuitive un-
derstanding of transfer learning without too much jargon. Language models (i.e.
pre-trained algorithms) do not ‘know’ or ‘understand’ anything in a deeper sense.
The machine learning process is essentially a sequence of parameter updates to opti-
mise the statistical solution of a very specific task. Some authors colloquially call
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build upon this ‘prior knowledge’ to learn new tasks with less data.
Put differently, a model’s parameters can represent statistical patterns
of word probabilities (‘language knowledge’), link word correlations
to specific classes (‘task knowledge’) and later reuse these parameter
representations for new tasks (‘knowledge transfer’).

In the political science literature, the use of shallow ‘language knowl-
edge’ through pre-trained word embeddings has become increasingly
popular (Rodman, 2020; Rodriguez & Spirling, 2022), while the inves-
tigation of deep ‘language knowledge’ and models like BERT has only
started very recently on selected tasks (Bestvater & Monroe, 2022; Licht,
2023; Widmann & Wich, 2022). We are not aware of political science
literature on ‘task knowledge’.

This paper therefore makes the following contributions. We system-
atically analyse: the benefits of transfer learning across a wide range of
tasks and datasets relevant for political scientists; the importance of ‘task
knowledge’ as a second component of transfer learning; the impact of
transfer learning on imbalanced data; and how much training data, and
therefore annotation labour, different algorithms require. Our insights
can help future research projects estimate their data requirements with
different methods.

To test the theoretical advantages of transfer learning, we systemati-
cally compare the performance of two classical supervised algorithms
(Support Vector Machine, Logistic Regression) to two transfer learning
models (BERT-base and BERT-NLI) on eight tasks from five widely
used political science datasets.

Our analysis empirically demonstrates the benefits of transfer learn-
ing. BERT-NLI outperforms classical models by 10.7 to 18.3 percentage
points (F1 Macro) on average when 100 to 2500 annotated data points
are available. BERT-NLI achieves similar average F1 Macro performance
with 500 data points as classical models with around 5000 data points.
We also show that BERT-NLI performs better with very little training
data <~ 1000, while BERT-base is better when more data is available.
Moreover, we find that ‘shallow knowledge transfer’ through word em-
beddings also improves classical models. Lastly, we show that transfer
learning is particularly beneficial for imbalanced data. These benefits
of transfer learning robustly apply across a wide range of datasets and
tasks.

this internal parameter representation ‘knowledge’. For a more formal discussion of
transfer learning see Ruder (2019) Ruder (2019) and Pan and Yang (2010).
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We conclude by discussing limitations of deep transfer learning and
by outlining new opportunities for political science research. To simplify
the re-use of BERT-NLI in future research projects, we open-source our
code?, general purpose BERT-NLI models? and provide advice for future
research projects.

2.2 Supervised machine learning from a transfer
learning perspective

2.2.1 Supervised Machine Learning in Political Science

The rich text-as-data literature demonstrates the wide variety of methods
in the toolkit of political scientists: supervised or unsupervised ideologi-
cal scaling; exploratory text classification with unsupervised machine
learning; or text classification with prior categories with dictionaries or
supervised machine learning (Benoit, 2020; Chatsiou & Mikhaylov, 2020;
Grimmer & Stewart, 2013; Lucas et al., 2015; Van Atteveldt et al., 2022;
Wilkerson & Casas, 2017). This paper focuses on one specific group
of approaches: text classification with prior categories with supervised
machine learning.

In the social sciences, supervised machine learning projects normally
start with a substantive research question which requires the repetition
of a specific classification task on a large textual corpus. Researchers
might want to: explain Russian foreign policy by classifying thousands
of statements from military and political elites into ‘activist’ vs. ‘conser-
vative’ positions (Stewart & Zhukov, 2009); or understand delegation
of power in the EU and classify legal provisions into categories of del-
egation (Anastasopoulos & Bertelli, 2020); or predict election results
and need to classify thousands of tweets into sentiment categories to
approximate twitter users’ preferences towards key political candidates
(Ceron, Curini, Iacus, & Porro, 2014). These research projects required
the classification of thousands of texts in topical, sentiment or other
conceptual categories (classes) tailored to a specific substantive research
interest.

Using supervised machine learning to support this process roughly

2An easy-to-use Jupyter notebook for training your own BERT-NLI model and
the full reproduction code is available at: https://github.com/MoritzLaurer/less
—annotating-with-bert-nli

3Several models are available at https://huggingface.co/MoritzLaurer
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involves the following steps: A tailored classification task is developed, for
example through iterative discussions resulting in a codebook; experts or
crowd workers implement the classification task by manually annotating
a smaller set of texts (training and test data); a supervised machine
learning model is trained and tested on this manually annotated data
to reproduce the human annotation task; if the model’s output obtains
a desired level of accuracy and validity, it can be used to automatically
reproduce the task on very large unseen text corpora. If implemented
well, the aggregate statistics created through this automatic annotation
can then help answer the substantive research question.

Political scientists have mostly used a set of classical supervised
algorithms for this process, such as Support Vector Machines (SVM),
Logistic Regression, Naive Bayes etc. (Benoit, 2020). These classical
algorithms are computationally efficient and obtain good performance
if large amounts of annotated data are available (Terechshenko et al.
2020). Their input is usually a document-feature matrix which provides
the weighted count of pre-processed words (features) per document in
the training corpus. Solely based on this input, these models try to
learn which feature (word) combinations are most strongly linked to a
specific class (e.g. the topic “economy”). Several studies have shown
the added value of these algorithms (for example Colleoni, Rozza, &
Arvidsson, 2014; Osnabriigge et al., 2021; Peterson & Spirling, 2018).

The key disadvantage of these classical algorithms is that they start
the training process without any prior ‘knowledge’ of language or tasks.
Humans know that the words “attack” and “invasion” express similar
meanings, or that the words “happy” and “not happy” tend to appear
in different contexts. Humans also quickly understand the task “classify
this text into the category ‘positive’ or ‘negative’”. Classical models
on the other hand need to learn these language patterns and tasks
from scratch with the training data as the only source of information.
Before training, the SVM is only an equation that can draw lines into
space. A SVM has no prior internal representation of the semantic
distance between the words “attack”, “war” and “tree”. This lack of
prior ‘knowledge’ of language and tasks is the main reason why classical
supervised machine learning requires large amounts of training data.

A first solution to the ‘language knowledge’ limitation compatible
with classical algorithms was popularised in 2013 with word embeddings
(Mikolov et al., 2013). Word embeddings represent words that are often
mentioned in similar contexts with similar vectors — a proxy for semantic
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similarity. These embeddings can for example be used as input features
for classifiers to provide them with a form of ‘language knowledge’ and
have gained popularity in political science (Rodman, 2020; Rodriguez &
Spirling, 2022). Word embeddings alone provide, however, only ‘shallow
language knowledge’: first, the information they capture is limited. The
vector of the word “capital” is the same, whether it appears next to the
word “city”, “investment” or “punishment”. Second, the improvement,
which word embeddings offer for classical algorithms is only a different
input layer: word embeddings instead of e.g. TF-IDF as input. Newer
models integrate word embeddings into stacked layers of many additional
vectors (parameters). These multi-layered, ‘deeper’ architectures are
designed to store more ‘knowledge’.

2.2.2 Deep Transfer Learning

Deep transfer learning tries to create ‘prior knowledge’ by splitting the
training procedure in roughly two phases: pre-training and fine-tuning
(Howard & Ruder, 2018). First, an algorithm is pre-trained to learn
some general purpose statistical ‘knowledge’ of language patterns in a
wide variety of domains (e.g. news, books, blogs), creating a language
model. Second, this pre-trained model is fine-tuned on annotated data
to learn a very specific task.*

Transfer learning therefore has two important components (Pan &
Yang, 2010; Ruder, 2019): (1) learning statistical patterns of language
(language representations) and (2) learning a relevant task (task repre-
sentations). Both types of representations are stored in the parameters
of the model.

For learning general purpose language representations, the most
prominent solution is BERT (Devlin et al., 2019) which is a type of
Transformer model (Vaswani et al., 2017). Transformers like BERT
are first pre-trained using a very simple task such as Masked Language
Modelling (MLM), which does not require manual annotation. During
MLM, some words are randomly hidden from the model and it is tasked
with predicting the correct hidden words. The overall objective of this
procedure is for the model’s parameters to learn statistical patterns
of language (language representations) such as semantic similarities of

4This describes the focus of the main steps. In practice, pre-training also involves
learning (less relevant) task(s) and fine-tuning also involves learning the language of
specific domain(s) (e.g. legal or social media texts).
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words or context-dependent ambiguities from a wide variety of texts (see
appendix B1 for details).

While sizeable performance increases with BERT-base models are
possible based on its ‘language knowledge’ (Devlin et al., 2019), data
requirements are still relatively high. Widmann and Wich (2022), for
example, show strong performance gains for an emotion detection task,
but point out that the amount of training data is still an important
limitation and that classes with less data underperform. An important
reason for this is that the pre-training task BERT-base has learned
(MLM) is very dissimilar to the actual final classification tasks researchers
are interested in. This is why the last, task-specific layer of BERT (the
task head tuned for MLM) is normally deleted entirely and reinitialised
randomly before fine-tuning — which constitutes an important loss of ‘task
knowledge’ (see appendix B for details on BERT’s layered structure).
BERT then needs to be fine-tuned on manually annotated data, to learn
a new, useful task and each of its classes from scratch.

2.2.3 BERT-NLI — Leveraging the Full Potential of Deep
Transfer Learning

More recently, methods have been proposed which do not only use prior
‘language knowledge’, but also prior ‘task knowledge’ of Transformers.®
There are several different approaches using these innovations (Brown
et al., 2020; Raffel et al., 2020; Schick & Schiitze, 2021a). This paper
uses one approach, based on Natural Language Inference (NLI), first
proposed by Yin et al. (2019) and later refined for example by S. Wang,
Fang, Khabsa, Mao, and Ma (2021).

What is NLI? NLI is a task and data format, which consists of two
input texts and three output classes. The input texts are a ‘context’
and a ‘hypothesis’. The task is to determine if the hypothesis is True,
False or Neutral given the context.® A hypothesis could be “The EU

®Note that the transfer of ‘task knowledge’ is not inherently limited to Transformers.
Osnabriigge et al. (2021) show that the task learned by a Logistic Regression trained
on the Manifesto Corpus can be applied to a different target corpus and that datasets
with broadly useful tasks can be re-used with classical models. Transfer learning
is not an ‘either-or’ category, but can be handled by different models to different
extents.

SNote that there is some variation in how the input texts and classes are called
in the literature. NLI can also be called Recognising Textual Entailment (RTE),
the ‘context’ can be called ‘premise’ and the three classes can be called ‘entailment’,
‘contradiction’, ‘neutral’ (Dagan et al., 2006; Williams, Nangia, & Bowman, 2018).
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Table 2.1: Examples of the NLI task

Hypothesis Context Class

The EU is trustworthy The EU has betrayed its partners False
during the negotiations on Sunday

The EU is trustworthy The US has betrayed its partners Neutral
during the negotiations on Sunday

The EU is trustworthy Civil society praised the EU for True
reliably keeping its promises.

is trustworthy” with the context “The EU has betrayed its partners
during the negotiations on Sunday”. In this case, the correct class would
be False, as the context contradicts the hypothesis. Note that it is not
about finding the objective truth to a scientific hypothesis, but only
about determining if the context string entails the hypothesis string.
See table 1 below for examples.

NLI has three important characteristics from a transfer learning
perspective: It is data-rich, it is a universal task, and it enables label
verbalisation. First, NLI is a widely used and data-rich task in NLP.
Many NLI datasets exist, and crowd-coders have created more than
a million unique hypothesis-context pairs. Using this data, the pre-
trained BERT-base can be further fine-tuned on the NLI classification
task, creating BERT-NLI. Our BERT-NLI models are trained on a
concatenation of eight general-purpose NLI datasets (around 1.2 million
texts) from the NLP literature (see appendix B3 for details).

Second, NLI is a universal task. Almost any classification task can
be converted into an NLI task. Take the text “We need to raise tariffs”
and our task could be to classify this text into the eight topical classes
of the Manifesto Corpus (“Economy”, “Democracy”, ..). BERT-NLI
can always only execute the NLI task: predicting one of the classes
True/False/Neutral given a context-hypothesis pair. We can, however,
translate the topic classification task into an NLI task by expressing
each topical class as a ‘class-hypothesis’, e.g. “It is about economy”,
“It is about democracy” etc. We can then take “We need to raise
tariffs” as context and test each of the class-hypotheses against this
context. Each context-hypothesis pair is provided as input to BERT-NLI,
which predicts the three NLI classes True/False/Neutral for each class-

We use the simplified vocabulary based on the instructions shown to crowd workers.
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hypothesis. We then select the topical class via the class-hypothesis
that BERT-NLI predicts to be the ‘truest’. Note that when we re-
purpose BERT-NLI for other tasks like topic classification, the class-
hypotheses do not have to be actually ‘true’ in a deeper sense. The
objective of reusing the classes of BERT-NLI for other tasks is only
to identify the most likely downstream class relevant for the new task.
The predictions for the NLI classes False and Neutral class are ignored.
Figure 1 illustrates how this approach enables us to solve almost any
classification task with BERT-NLI.

Using a universal task for classification is an important advantage in
situations of data scarcity. Both classical algorithms and BERT-base
models need to learn the target task the researcher is interested in from
scratch, with the training data as the only source of task-information.
They can then only solve this very specific task. With the universal
BERT-NLI classifier, almost any task can be translated into the universal
NLI task format. BERT-NLI can then fully re-use the ‘task knowledge’
it has already learned from hundreds of thousands of general-purpose
NLI context-hypothesis pairs. No task-specific parameters need to be
randomly reinitialised in the task head. No ‘task knowledge’ is lost.

This is also linked to the third important characteristic of NLI
classification: label verbalization (Schick & Schiitze, 2021a). Remember
that human annotators always receive explicit explanations of each class
in form of a codebook and can use their prior knowledge to understand
the task without any examples. Standard classifiers, on the other hand,
only receive examples linked to an initially meaningless number for
the respective class (both classical algorithms and BERT-base). They
never see the description of the classes in plain language and need
to statistically guess what the underlying classification task is, only
based on the training data. With the NLI task format, the class can
be explicitly verbalised in the hypothesis based on the codebook (see
figure 1). More closely imitating human annotators, BERT-NLI can
therefore build upon its prior language representations to understand
the meaning of each class more quickly. Expressing each class in plain
language provides an additional important signal to the model.

As we will show in section 3, the combination of Transformers,
self-supervised pretraining, intermediate training on the data-rich NLI
task, reformatting of target tasks into the universal NLI task and label
verbalisation can substantially reduce the need for task-specific training
data.
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Figure 2.1: Illustration of standard classification vs. universal NLI classification
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*** Class-hypothesis: Class verbalised by the researcher. The classes are not limited
by the training data. Any task and its classes can be verbalised.



2.3 Empirical analyses

2.3.1 Setup of empirical analyses: data and algorithms

To investigate the effects of transfer learning we analyse a diverse group of
datasets, representing typical classification tasks which political scientists
are interested in. The datasets vary in size, domain, unit of analysis,
and task-specific research interest (see table 2). For all datasets, the
overall task for human coders was to classify a text into one of multiple
predefined classes of substantive political interest. Additional details on
each dataset are provided in appendix A.

Different data pre-processing steps were tested. One objective during
pre-processing is to align the classifier input more closely with the
input human annotators receive. In some datasets, the unit of analysis
for classification are individual quasi-sentences’ extracted from longer
speeches or party manifestos (Burst et al., 2020; Project, 2015). Human
coders did, however, not interpret these quasi-sentences in isolation, but
after reading the preceding (and following) text. Inspired by Bilbao-
Jayo and Almeida (2018) we therefore test each algorithm with two
types of inputs during hyperparameter search: only the single annotated
quasi-sentence, or the quasi-sentence concatenated with its preceding
and following sentence. See appendix E for other pre-processing steps
for each algorithm.

Algorithms
Each dataset is analysed with the following algorithms:

o Classical algorithms: Support Vector Machines (SVM) and Logistic
Regression — two widely used algorithms to represent classical ap-
proaches. For each classical algorithm we test two types of feature
representations: TFIDF vectorization and average word embed-
dings (see appendix E4). Word embeddings provide a shallow form
of language knowledge’®

o A standard Transformer model: We use DeBERTaV3-base, which
is an improved version of the original BERT trained on more

A quasi-sentence is an entire sentence or a part of a sentence that represents one
semantic unit. If one sentence contains two concepts of interest, it is split into two
quasi-sentences.

8We use pre-trained GloVe embeddings (Pennington, Socher, & Manning, 2014)
provided by the SpaCy library (en_ core_web_1g-3.2.0 by Montani et al., 2022), a
widely used type of word embedding (Rodriguez & Spirling, 2022).
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Table 2.2: Key political datasets used in the analysis

Dataset Task Domain Unit of Includes Avg. Text Data Points
Analysis Context? length Train / Test
Manifesto Corpus (Burst et Classify text in 8 general Party Manifestos Quasi- Yes 116 characters 121570 all
al., 2020) topics sentences (348 with 88158 train
context) 33412 test
Sentiment Economy News Differentiate if economy is News articles News No 1624 cha. 3382 all
(Barber4 et al., 2021) performing well or badly headline & 3000 train
according to the text (2 first 382 test
classes) paragraphs
US State of the Union Classify text in policy topics  Presidential Quasi- Yes 116 cha. (347 21641 all
Speeches (Project, 2015) (22 classes) Speeches sentences with context) 15207 train
6434 test
US Supreme Court Cases Classify text in policy topics Law, summaries  Court case No 2456 cha. 7752 all
(Project, 2014) (20 classes) of court cases summaries 5236 train
and rulings (multiple 2326 test
paragraphs)
CoronaNet (Cheng et al., Classify text in types of Texts from One or No 297 cha. 48998 all
2020) policy measures against research multiple 34298 train
COVID-19 (20 classes) assistants, news,  sentences 14700 test
governments
Manifesto stances towards Identify stance towards the Party Manifestos Quasi- Yes Similar to 13507 all
the military (subset of Burst simple topic “military”. (3 sentences Manifesto 3970 train
et al., 2020) classes: Corpus above 9537 test
positive/negative/unrelated).
Manifesto stances towards Identify stance towards the Party Manifestos  Quasi- Yes Similar to 5878 all
protectionism (subset of concept “protectionism” (3 sentences Manifesto 2116 train
Burst et al., 2020) classes: Corpus above 3762 test
positive/negative/unrelated).
Manifesto stances towards Identify stance towards the Party Manifestos Quasi- Yes Similar to 7478 all
traditional morality (subset complex concept “traditional sentences Manifesto 3188 train
of Burst et al., 2020) morality” (3 classes: Corpus above 4290 test

positive/negative/unrelated).




data, with a better pre-training objective than MLM and some
architectural improvements (P. He et al., 2021, see appendix B2
for details).

e An NLI-Transformer: We fine-tune DeBERTaV3-base on 1.279.665
NLI hypothesis-context pairs from eight existing general-purpose
NLI datasets (“BERT-NLI”, see appendix B3).?

Converting political science tasks to NLI format and fine-
tuning BERT-NLI

Specifically for fine-tuning BERT-NLI, the following steps were re-
quired. First, we read the codebook for each task and manually formulate
one hypothesis corresponding to each class. For example, Barbera et al.
(2021) asked coders to determine if a news article contains positive or
negative indications on the performance of the U.S. economy. Based on
the codebook, we therefore formulated the two class-hypotheses “The
economy is performing well overall” and “The economy is performing
badly overall”.!® Second, we optionally write a simple script to reformat
the target texts to increase the natural language fit between the class-
hypothesis and the target (con)text, if necessary.!! Third, we fine-tune
the general-purpose BERT-NLI model on e.g. 500 annotated texts from
the Manifesto-military dataset. To this end, we match each text with the
class-hypothesis we know to be ‘true’ based on the existing annotations
and assign the label ‘true’. In addition, we also match each text with
one random ‘not-true’ class-hypothesis and assign the label ‘neutral’
This avoids that BERT-NLI learns to only predict the class ‘true’ and
provides a convenient means for data augmentation. The result is e.g.
BERT-NLI-manifesto-military, which both ‘knows’ the general NLI task
and the specific Manifesto-military task reformatted to NLI. Fourth, the
fine-tuned model can then be applied to texts in a test set. As illustrated
in figure 1, each test text is fed into BERT-NLI exactly N times, once
with each of the N different class-hypotheses. The class for which the
hypothesis is the most ‘true’ is selected.

Note that this approach allows us to further align the classifier
input with the human annotator input: each human coder based their
annotations on instructions in a codebook and with BERT-NLI we can

9The model is available at https://huggingface.co/MoritzLaurer/DeBERTa-v3
-base-mnli-fever-docnli-ling-2c
0Tn practice, we tested different hypothesis formulations during hyperparameter

search, see appendix B and E.

H¥or some tasks, we found that reformatting the context to “The quote: “context”
and formulating the hypotheses as ‘The quote is about ..” increases the natural
language fit between hypothesis and context, which increases performance (see
appendix B). The literature uses less natural formulations like ‘It is about ..” (Yin et
al., 2019).

I
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provide these coding instructions to the model via the class-hypotheses
(see ‘label verbalisation’ above and appendix B).

Comparative analysis pipeline and metrics

The objective of our analysis is to determine how much data, and
therefore annotation labour, is necessary to obtain a desired level of
performance on diverse classification tasks and imbalanced data. To
ensure comparability and reproducibility across datasets and algorithms,
each dataset is analysed based on the same script: the random training
sample size is successively increased from 0 to 10 000 texts, hyperpa-
rameters are tuned on a validation set, final performance is tested on a
holdout test set. We assess uncertainty by taking three random training
samples and report standard deviation (see appendix C).

We evaluate each model and task with multiple metrics (following
the implementations by Pedregosa et al., 2011). Firstly, accuracy counts
the overall fraction of correct predictions (and is equivalent to F1 Micro).
The disadvantage of accuracy is that it overestimates the performance
of classifiers overpredicting majority classes and neglecting minority
classes. On three of our tasks, a baseline model that only predicts the
majority class would already achieve above 90% accuracy due to high
data imbalance. We assume that in most social science use-cases, all
classes included in a task are of roughly similar importance, making
accuracy a misleading metric for performance. Secondly, balanced
accuracy calculates accuracy for each class separately and then takes the
average of each per-class accuracy score (equivalent to ‘Recall Macro’).
This gives equal weight to all classes independently of their size and is
a more suitable metric, assuming that classes have similar substantive
value. A characteristic of balanced accuracy is that it is higher for
classifiers with less false negatives (high ‘Recall’) but does not properly
account for false positives (risk of lower ‘Precision’). Balanced accuracy
empirically favours classifiers that predict many minority classes well but
perform less well on a few majority classes (appendix D1). Thirdly, F1
Macro is a metric that tries to remedy this issue. It is the harmonic mean
of Precision and Recall and gives equal weight to all classes independently
of their size. Appendix D provides a more detailed empirical discussion
and data, including other metrics like Cohen’s Kappa. We conclude that
F1 Macro is the most adequate metric for many social science use-cases
of supervised machine learning and we therefore use it as the primary
metric in this paper, while also reporting other metrics.!?

2Note that the importance of different classes might vary in different substantive
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F1 Macro

Figure 2.2: Average performance across eight tasks vs. training data
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The ‘classical-best’ lines display the results from either the SVM or Logistic
Regression, whichever is better. Note that four datasets contain more than
2500 data points, see figure 3.

2.3.2 Empirical results

Figure 2 displays the aggregate average scores across all datasets. Figure
3 displays the results per dataset (see appendix D for detailed metrics).
We focus on two main aspects across tasks: overall data efficiency and
ability to handle imbalanced data.

Regarding data efficiency, deep transfer learning models perform
significantly better with less data than classical models across all tasks.
The results show that BERT-NLI outperforms the classical models with

research projects and researchers can make more nuanced decisions on the weight
they attribute to different classes.
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TF-IDF by 10.7 to 18.3 percentage points on average (F1 Macro) when
100 to 2500 annotated data points are available (7.9 to 12.4 with BERT-
base). Classical models can be improved by leveraging shallow ‘language
knowledge’ from averaged word embeddings, but a performance difference
of 8.0 to 11.7 F1 Macro remains (0.4 to 7.7 with BERT-base). The results
indicate that BERT-NLI achieves similar average F1 Macro performance
with 500 data points as the classical models with around 5000 data
points.'3 The performance difference remains, as larger amounts of data
are sampled (5000 — 10 000, see figure 3 and appendix D3) and applies
across domains, units of analysis and tasks.

Moreover, the more transfer learning components a model is using,
the better it becomes at handling imbalanced data. We demonstrate this
by comparing accuracy/F1 Micro to F1 Macro averaged across the data
intervals 100 to 2500. Higher improvements with F1 Macro indicate an
improved ability to handle imbalanced data. When ‘shallow language
knowledge’ with word embeddings is added to classical model instead of
TFIDF, F1 Macro is increased by +4.6 percentage points, while accu-
racy/F1 Micro is only increased by +2.9 — a +1.7 higher improvement
for F1 Macro. With BERT-base and its ‘deep language knowledge®,
the improvement over classical TFIDF is 7.2 with accuracy/F1 Micro
and +10.3 with F1 Macro — a 4+3.1 higher improvement for F1 Macro.
With BERT-NLI and its additional ‘task knowledge’, the improvement
is +8.3 with accuracy/F1 Micro and 14.6 with F1 Macro — a +6.3 higher
improvement for F1 Macro. The higher F1 Macro score improvements
compared to accuracy/F1 Micro indicates that transfer learning reduces
reliance on majority classes. Good classifiers should perform similarly
across all classes a researcher is interested in. Appendix D1 provides
additional data demonstrating that, when more transfer learning com-
ponents are added, the performance on different classes becomes less
varied.

This has two main reasons: First, both BERT variants (and word
embeddings) require fewer examples for the words used in minority
classes thanks to their prior representations of e.g. synonyms and
semantic similarities of texts (‘language knowledge’). Second, BERT-
NLI performs better on F1 Macro and especially balanced accuracy and
its performance across classes is least varied. Its prior ‘task knowledge’

13Note that the results above 2500 data points are harder to compare, as only 4
datasets have enough data for the data intervals of 5000 or more. This statement is
therefore based on the performance for 4 datasets (see appendix D) as well as the
overall trendline for all 8 datasets.
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further reduces the need for data for smaller classes. In appendix
D1 we show empirically that the comparatively high performance of
BERT-NLI on balanced accuracy is due to higher performance on many
smaller classes compared to few majority classes. BERT-NLI can already
predict a class without a single class example in the data (‘zero-shot
classification’). It does not need to learn each class for the new task since
it uses the universal NLI task where classes are expressed in hypotheses
verbalising the codebook. This capability is also illustrated in figures 2
and 3 by the metrics with zero training examples.

Note that our metrics are based on fully random training data
samples, which do not always contain examples for all classes, especially
for datasets with many classes. This simulates a typical challenge
social scientists are facing, where random sampling is common and
even advanced sampling techniques like active learning require an initial
random sampling step (Miller et al., 2020). Transfer learning and
especially prior ‘task knowledge’ can therefore become another tool in
our toolbox to address the issue of imbalanced data. Also note that
the values for accuracy/F1 Micro are significantly higher than for F1
Macro for all models and only reporting accuracy /F1 Micro provides a
misleading picture of actual performance on imbalanced data.

How to choose between BERT-base and BERT-NLI? The main
criteria are the amount of training data and the degree of data imbalance.
BERT-NLI is useful in situations where little and very imbalanced data
is available <= 1000. As more data becomes available to learn the new
task (and minority classes) from scratch, it seems advisable to use the
simpler BERT-base model given the converging performance >~ 2000.
BERT-NLI has a tendency to perform better on (many) minority classes,
while performing less well on (few) majority classes — which can be
good or bad, depending on the use-case (see appendix D). Another
dataset characteristic that can influence the value of BERT-NLI is
concept complexity. BERT-NLI seems to work better when concepts are
measured that can be clearly expressed in the hypotheses. For example,
it performs particularly well on the Manifesto-military task, measuring
the stance towards the comparatively simple topic ‘military’. At the same
time, it performs comparatively less well on Manifesto-morality where
the complex concept ‘traditional morality’ is measured, which covers
diverse sub-dimensions from traditional family values, religious moral
values to unclear concepts like ‘unseemly behaviour’. We assume that it
is harder for BERT-NLI to map the simple language in the hypothesis
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to complex concepts. We discuss other factors that can influence the
performance of BERT-NLI in appendix B4.

Lastly, we observe that hyperparameters and text pre-processing can
have an important impact on performance for all models. For example,
while BERT-base models are normally trained for less than 10 epochs,
we find that training for up to 100 epochs increases performance on small
datasets (see appendix E3 for a systematic study on hyperparameters).
Moreover, regarding pre-processing, if the unit of analysis are quasi-
sentences, including the preceding and following sentence during pre-
processing systematically increases performance for all models (appendix
E1); the value of word embeddings can be increased by reweighting the
averaged embeddings and selecting more important words with part-of-
speech tagging (appendix E4); and the performance of BERT-NLI can
be improved through simple pre-processing steps (appendix B5).

2.4 Discussion of limitations

While deep transfer learning leads to high classification performance,
several limitations need to be discussed. First, deep learning models
are computationally slow and require specific hardware. BERT-like
Transformers take several minutes to several hours to fine-tune on a high-
performance GPU, while a classical model can be trained in minutes on a
laptop CPU. To help alleviate this limitation, we share our experience for
accessing GPUs (appendix F) and choosing the right hyperparameters
(appendix E3). Our extensive hyperparameter experiments indicate
that a set of standard hyperparameters performs well across tasks and
data sizes and researchers can refer to these default values to reduce
computational costs.

Moreover, using BERT requires learning new software libraries. Luck-
ily, there are relatively easy to use open-source libraries like Hugging
Face Transformers, which only require a moderate understanding of
Python and no more than secondary education in math (Wolf et al.,
2020).'* Furthermore, specifically for BERT-NLI, we share our models
and code. We provide several BERT-NLI models used in this paper
with state-of-the-art performance on established NLI benchmarks. We
invite researchers to copy and adapt our models and code to their own

MHugging Face also provides a beginner-friendly course: https://huggingface.co/
course/chapteri/1
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Figure 2.3: Performance per task vs. training data size (F1 Macro)
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datasets.!®

An additional disadvantage specifically of NLI is its reliance on
human annotated NLI data, which is abundantly available in English,
but less so in other languages. We also provide a multilingual BERT-NLI
model pre-trained on 100 languages, but we expect it to perform less
well than English-only models (appendix B).1® There are several other
techniques for leveraging ‘prior task knowledge’ which do not rely on
human annotated data and could be explored in future research (Brown
et al., 2020; Schick & Schiitze, 2021a).

Lastly, model (pre-)training can introduce biases and impact the
validity of outputs. There is a broad literature on bias in deep learning
models (Blodgett, Barocas, Daumé III, & Wallach, 2020) and this most
likely extends to political bias and NLI. It is possible, for example, that
the hypotheses “The US is trustworthy” and “China is trustworthy”
will result in different outputs for semantically equal inputs as one
actor might have been mentioned more often in a negative context
than others during (pre-)training. Political bias in deep learning is an
important subject for future research. Moreover, the ‘black box’ nature
of deep learning models makes them harder to interpret. This becomes
problematic when researchers want to understand why exactly a model
has made a certain classification. There are some open-source libraries
such as Captum!” which can partly alleviate this issue by extracting the
importance of specific features (words) for a classification decision to
enable interpretations. More generally, whether the supervised machine
learning pipeline used for a specific new research question is internally
and externally valid is an important additional assessment for substantive
research projects (Baden et al., 2022).

2.5 Conclusion and outlook

Lack of training data is a major hurdle for researchers who consider using
supervised machine learning. This paper outlined how deep transfer
learning can lower this barrier. Transformers like BERT can store
information on statistical language patterns (‘language knowledge’) and

I5NLI models are available at https://huggingface.co/MoritzLaurer; an easy-
to-use Jupyter notebook to train your own BERT-NLI model is available at: https://
github.com/MoritzLaurer/less-annotating-with-bert-nli

https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli

"https://github.com/pytorch/captum
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they can be trained on a universal task like NLI to help them learn
downstream tasks and classes more quickly (‘task knowledge’). In
contrast, classical models need to learn language and tasks from scratch
with the training data as the only source of information for any new
task.

We systematically test the effect of transfer learning on a range of
eight tasks from five widely used political science datasets with varying
size, domain, unit of analysis, and task-specific research interest. Across
these eight tasks, BERT-NLI trained on 100 to 2500 data points performs
on average 10.7 to 18.3 percentage points better than classical models
with TF-IDF vectorization (F1 Macro). We also show that leveraging the
shallow ‘language knowledge’ of averaged word embeddings with classical
models improves performance compared to TF-IDF, but the difference
to BERT-NLI is still large (8.0 to 11.7 F1 Macro). Our study indicates
that BERT-NLI trained on 500 data points achieves similar average F1
Macro performance as classical models with around 5000 data points.
Moreover, transfer learning works particularly well for imbalanced data,
as it reduces the data requirements for minority classes. We also provide
advice on when to use BERT-NLI and when using a simpler BERT-base
model is advisable. Researchers can use our results as a rough indicator
for how much annotation labour their task could require with different
methods.

Based on these empirical findings, we believe that deep transfer
learning has great potential for making supervised machine learning a
more valuable tool for social science research. As most research projects
tackle new research questions which require new data for different tasks
on mostly imbalanced data, the reduction of data requirements is a
substantial benefit. Moreover, this enables researchers to spend more
time on ensuring data quality rather than quantity and carefully cre-
ating test data for ensuring the validity of models. Accurate models
combined with high quality datasets directly contribute to the validity
of computational methods.

There are many important directions for future research this pa-
per could not cover. This paper used random sampling for obtaining
training data. Active learning can further reduce the number of re-
quired annotated examples (Miller et al., 2020). In fact, combinations of
active learning and BERT-NLI are promising, as the zero-shot classifica-
tion capabilities of BERT-NLI can be used in the first sampling round.
Moreover, issues of political bias and validity need to be investigated
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further. Computational social scientists should become a more active
part of the debate on (political) bias and validity in the machine learning
community.

Lastly, we believe that transfer learning has great potential for
enabling the sharing and reusing of data and models in the computational
social sciences. Datasets are traditionally mostly designed for one specific
research question and fine-tuned models can hardly be reused in other
research projects. Transfer learning in general and universal tasks in
particular can help break these silos. Computational social scientists
with a ‘transfer learning mindset’ could create general purpose datasets
and models designed for a wider variety of use cases. Transfer learning
opens many new venues for sharing and reuse which have yet to be
explored.

Appendix

The extensive appendix is available online via the published version of the
paper: Laurer, M., Van Atteveldt, W., Casas, A., & Welbers, K. (2023).
Less Annotating, More Classifying: Addressing the Data Scarcity Issue
of Supervised Machine Learning with Deep Transfer Learning and BERT-
NLI. Political Analysis, 1-33. https://doi.org/10.1017/pan.2023.20
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Chapter 3

Lowering the Language
Barrier

Investigating Deep Transfer Learning and
Machine Translation for Multilingual Analyses
of Political Text

Abstract. The social science toolkit for computational text analysis
is still very much in the making. We know surprisingly little about
how to produce valid insights from large amounts of multilingual texts
for comparative social science research. In this paper, we test several
recent innovations from deep transfer learning to help advance the
computational toolkit for social science research in multilingual settings.
We investigate the extent to which prior language and task knowledge
stored in the parameters of modern language models is useful for enabling
multilingual research; we investigate the extent to which these algorithms
can be fruitfully combined with machine translation; and we investigate
whether these methods are accurate, practical and valid in multilingual
settings — three essential conditions for lowering the language barrier
in practice. We use two datasets with texts in 12 languages from 27
countries for our investigation. QOur analysis shows, that, based on
these innovations, supervised machine learning can produce substantively
meaningful outputs. Our BERT-NLI model trained on only 674 or 1,674
texts in only one or two languages can validly predict political party
families’ stances towards immigration in eight other languages and ten
other countries.

Paper published as: Laurer, M., Van Atteveldt, W., Casas, A., & Welbers, K.
(2023). Lowering the Language Barrier: Investigating Deep Transfer Learning and
Machine Translation for Multilingual Analyses of Political Texts. Computational
Communication Research, 5(2), 1. https://doi.org/10.5117/CCR2023.2.7.LAUR
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3.1 Introduction

While computational text analysis methods have exploded in popularity
over the past decade, our computational toolkit is still very much in
the making. We know surprisingly little about how to produce valid
measurements with computational methods that are directly useful for
substantive comparative social science research. This issue is even worse
in multilingual settings (Baden et al., 2022). One important reason
for this is the language barrier: People do not speak many languages
besides their mother tongue and if they do, their language knowledge is
limited to a few dominant languages like English (Eurobarometer, 2012).
This is also reflected in the computational text analysis literature, where
most research focuses on English, while multilingual tools are lacking
(Baden et al., 2022).

For supervised machine learning, this language barrier leads to
several important challenges which limit its utility for comparative
multilingual research. Supervised text classification traditionally requires
large amounts of training data for classifiers to obtain a useful level of
accuracy. This issue is aggravated in multilingual research settings, where
even more data and language knowledge are required for the different
languages, countries and cultures that are relevant for comparative
research questions. Researchers regularly face the question whether
they have the human resources and computational tools available for
meaningful comparative research on large amounts of multilingual texts.
The answer to this question is probably too often: No.

This paper investigates different computational methods for lowering
this language barrier. We investigate the extent to which deep transfer
learning can help address the issue, by leveraging ‘prior language and
task knowledge’ stored in the parameters of modern language models
(Ruder, 2019); we investigate the extent to which these models can be
combined with machine translation to further lower this barrier; and
we investigate whether these methods are not only accurate but also
practical and valid — three important criteria for lowering the language
barrier in practice.

We show empirically that transfer learning models are useful tools
for comparative multilingual research. We design two analyses to sys-
tematically compare different methods on two datasets with texts in
12 languages from 27 countries: a simple topic classification task based
on the Manifesto corpus (Burst et al., 2020) and a complex task on
stances towards immigration (Zobel & Lehmann, 2018). We empirically

34



compare the performance and usability of many different combinations
of methods on both datasets. Lastly, we show that certain transfer
learning models do not only produce accurate, but also valid outputs
using one prominent use-case. Our best model (BERT-NLI) fine-tuned
on only 674 or 1,674 texts in only one or two languages can validly
predict political party families’ stances towards immigration in eight
other languages and ten other countries. We open-source our models,
a custom dataset of 2.7 million NLI texts in 26 languages spoken by
around 4 billion people, as well as the full reproduction code.! We con-
clude by discussing limitations of different methods and opportunities
for future research. Through our investigation we hope to contribute to
the ‘accumulation of methodological knowledge and guidance, as well as
the strategic improvement of available tools’ (Baden et al., 2022, p. 14).
Based on the methodological findings in this paper, we hope to provide
guidance for researchers to help them tackle a key challenge of social
science research: creating high quality measurements from multilingual
text for answering complex substantive questions.

3.2 Existing literature

3.2.1 Machine translation and vector representation ap-
proaches

The challenge of computationally analysing multilingual texts has been
studied with different methods and objectives in both the social sciences
and computer linguistics. In the social sciences (for a good overview,
see Licht & Lind, 2023), the most widely used approach is machine
translation (MT). For this approach, multilingual texts are machine
translated into a single anchor language, which classical algorithms
can process, and researchers can understand. Several authors have
demonstrated the utility of MT for computational text analyses: Lucas
et al. (2015) use MT to estimate topic models related to Jihadi Fatwas or
reactions to the Snowden revelations in China; de Vries et al. (2018) show
that topic modelling leads to comparable results on machine translated
and human translated texts; Windsor, Cupit, and Windsor (2019) argue
that applying a sentiment dictionary to UN speeches leads to similar
results on machine and human translated texts; Diipont and Rachuj

!Our models and dataset are available at https://huggingface.co/MoritzLaurer,
our reproduction code is available at https://github.com/MoritzLaurer/language
-barrier-multilingual-transfer
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(2022) use machine translated party manifestos from 19 countries to
study policy diffusion across countries with textual similarity measures.
Regarding supervised machine learning and text classification (the focus
of this paper) Courtney, Breen, McMenamin, and McNulty (2020) show
that manual annotations on machine translated texts are comparable to
annotations on original texts in an annotator’s mother tongue, and Lind,
Heidenreich, Kralj, and Boomgaarden (2021) use machine translation
combined with a dictionary to enable supervised classification.

As an alternative (or supplement) to MT, the computer linguistics
literature has introduced multilingual vector representation approaches
(Conneau et al., 2020; Ruder, Vuli¢, & Sggaard, 2019). While MT
approaches align text by translating all texts into the same language,
multilingual representation approaches align texts by representing all
texts in the same vector space. These vector-based approaches try to
take texts from different languages and convert semantically similar
texts to similar vectors independently of the original language. Many
different approaches using multilingual vector representations exist. The
first popular approach was multilingual word embeddings. It extends
the idea of classical word embeddings (Mikolov et al., 2013), only that it
also represents tokens from different languages in the same vector space
(Ruder et al., 2019). For example, the tokens ‘love’ and ‘amour’ would
be represented by similar vectors, while ‘Auto’ would be represented by
a relatively distant vector.

A few years later, the deep learning literature further improved on
(multilingual) embedding approaches. Researchers introduced mono-
lingual transformers like BERT (Devlin et al., 2019), which were soon
extended to become multilingual (Conneau et al., 2020; Conneau &
Lample, 2019). A monolingual BERT model consists of a vocabulary
layer of around 30,000 (English) word vectors followed by multiple layers
of additional vectors designed to create contextualised vector represen-
tations. Concretely, when a text is provided to BERT, the text is (a)
tokenized, (b) each token is converted to a word vector representation
stored in the vocabulary layer, (c) the following layers change the repre-
sentation of each word vector depending on its surrounding words and
(d) the last task-specific layer produces an output, e.g. probabilities for
different classes. The vectors in the different layers are tuned during
a pre-training phase with a self-supervised task like Masked Language
Modelling (MLM) (Devlin et al., 2019). To make these models multi-
lingual, the only main changes are the pre-training data and the initial
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vocabulary layer: First, instead of self-supervised pre-training on English
texts, they are pretrained on more texts from up to 100 languages at
the same time; second, the vocabulary layer is extended from around
30,000 tokens to around 250,000 tokens to account for the wider vocabu-
lary necessary for many languages and scripts. The multilingual BERT
(mBERT) then works essentially the same as a monolingual BERT and
can be fine-tuned on any of the 100 languages it has been pre-trained
on (Conneau et al., 2020; P. He et al., 2021).

What makes multilingual representation models an interesting al-
ternative to MT is their capability of ‘cross-lingual transfer learning’
(Conneau et al., 2020). mBERT can be fine-tuned to perform a task with
data from one (or more) source language(s) and then perform the same
task on any other target language it has learned during pre-training -
without requiring fine-tuning data from the target languages.

Many different variants of BERT exist and can be used to classify
multilingual texts. First, a normal pre-trained mBERT can directly be
fine-tuned on a classification task. Second, a multilingual Sentence-BERT
can be used to generate multilingual sentence embeddings (Reimers &
Gurevych, 2020). These sentence embeddings can then be used as the
training input for a classical algorithm like a Logistic Regression — a
method that has previously been used by political scientists (Licht, 2023).
This approach is similar to feeding averaged word embeddings into a
Logistic Regression, only that sentence embeddings are better at approx-
imating the meaning of texts longer than individual words (Reimers &
Gurevych, 2019). The main advantage of this approach for classification
is that Sentence-BERT is only used to produce embeddings without be-
ing fine-tuned and then only a simple algorithm like Logistic Regression
is fine-tuned on these embeddings. This strongly reduces computation
costs. Third, multilingual universal classifiers like mBERT-NLI can
be used for classification. With BERT-NLI algorithms, the researcher
first formulates a ‘class-hypothesis’ for each label that verbalises the
underlying classification task. ‘The text is positive’ and ‘The text is
negative’ could be two hypotheses for a binary sentiment classification
task. Each target text in the corpus is then fed into mBERT-NLI to-
gether with the class-hypotheses and the model tries to predict which
class-hypothesis is ‘truest’ for the respective text. This approach has
been shown to perform very well in monolingual use-cases, when only
little and imbalanced data is available (Laurer, Van Atteveldt, Casas, &
Welbers, 2023a; S. Wang et al., 2021).
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3.2.2 Gaps and research questions

Given the relative novelty of multilingual transformers like mBERT, we
do not know enough about the advantages and disadvantages of different
approaches for multilingual social science research.

First, most variations of mBERT have not yet been studied for
social science tasks. Only the value of multilingual Sentence-BERT
for classifying texts from party manifestos has been investigated in
one paper (Licht, 2023). The author uses a pre-trained multilingual
Sentence-BERT to create multilingual sentence embeddings as the input
for training a classical regression model. They do not fine-tune the
BERT model. The recent political science literature shows that fine-
tuning BERT outperforms classical algorithms for text classification on
monolingual data (Bestvater & Monroe, 2022; Terechshenko et al., 2020;
Widmann & Wich, 2022). In a multilingual setting however, it is unclear
how fine-tuning an mBERT model compares to other approaches. The
same is the case for universal classification approaches like BERT-NLI,
which have only been applied to English data (Laurer et al., 2023a).
This paper investigates: What are the advantages and disadvantages
of different algorithms in multilingual settings in terms of performance
and usability for social science tasks?

Secondly, multilingual vector representation approaches and MT can
be treated as alternatives, but also as supplements. The main benefit
of mBERT is that they can ingest texts in up to 100 languages at the
same time. A supplementary benefit of MT is that one text can be
translated into many different languages. This also means that one text
in one language can be machine translated to multiple texts in multiple
languages and mBERT can use all texts for training. Barriere and
Balahur (2020), for example, take tweets in five languages annotated for
sentiment and translate each tweet to the respective other four languages.
They then use the combined original and translated tweets to train an
mBERT model and achieve higher performance than monolingual BERT
trained only on the monolingual data. Bornea, Pan, Rosenthal, Florian,
and Sil (2021) use a similar approach for question answering tasks. The
assumption is that translating one text into multiple languages increases
quantity and variety of data, which can increase performance. MT could
therefore provide a convenient means for data augmentation (Li, Hou,
& Che, 2022) when combined with mBERT and when limited amounts
of data are available. At the same time, this combined approach risks
creating noisy data. This paper investigates: What are the advantages
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and disadvantages of combining MT with mBERT for social science
tasks?

Third, our knowledge of the specific challenges for validating multi-
lingual text classifiers is limited. Supervised machine learning has some
in-built validation via the held-out test set, but risks of low external
validity and biases remain. This is even more severe in multilingual
settings. Aligning text inputs from different languages is only one chal-
lenge, for which the two main solutions were outlined above. Accounting
for cultural differences that cannot simply be input-aligned is a second
important challenge amplified in multilingual settings. Lexically identi-
cal texts can have a dramatically different meaning depending on the
language and country of origin of the speaker. Take the phrase ‘We
are proud of the achievements of the political right in our country’. If
uttered by a German politician, this phrase would evoke a specific mean-
ing for German readers. A German reader would probably place the
politician at the far right of the political spectrum, as the identification
as “politically right” (“politisch rechts”) is not accepted in the German
mainstream, given the term’s association with Nazi Germany. At the
same time, if the exact same phrase is uttered in French by a French
politician (“la droite”), French readers could reasonably place the politi-
cian only slightly right to the political center, given the different national
history of the term. Our toolkit for addressing this second challenge is
even less developed and it cannot be analysed with standard aggregate
metrics. This paper investigates: How can the validity in multilingual
text classification be assessed and how do different approaches impact
validity?

Answering these questions can contribute to the broader empirical
challenge of lowering the language barrier for comparative research.
Only if supervised machine learning is accurate, usable, and valid in
multilingual settings can it be a useful tool for substantive comparative
social science research.

3.3 Methodology

To address the research questions outlined above, we apply combinations
of different multilingual text analysis approaches to several practical
multilingual research scenarios. The first analysis focuses on performance
and usability while the second analysis focuses on validity.
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3.3.1 Analysis 1: Comparing machine translation and
(m)BERT

Scenarios. We analyse two practical scenarios where the language
barrier hinders comparative research. First, in the low-resource scenario
we assume that a research team has annotated texts for a task in one
source language and wants to apply the task to texts in another target
language for which they do not have annotated data. We choose English
as the source language, as it is a widely spoken and data-rich language
(“one language” scenario in figure 3.1). Second, in the higher-resource
scenario a research team has annotated texts for a task in multiple
languages and they want to build a classifier that is robust across all
these languages (“many languages” scenario in figure 3.1). For both
scenarios, we assume that the research team has limited resources and
therefore assume that 500 annotated texts are available per source
language: In total 500 texts in the first scenario and 500 per language
in the second scenario. To each of these two scenarios, we apply three
different machine translation approaches (second column in figure 3.1)
and four different algorithms (third column in figure 3.1).

Datasets. We selected two datasets that contain multilingual data
and tasks that are highly relevant for comparative political science
research. Firstly, we choose the Manifesto Corpus and its topic iden-
tification task (Burst et al., 2020). The dataset is widely used in the
comparative politics literature and it is one of the few datasets with a
harmonised category scheme across multiple languages including non-
Western languages. For our analysis, we choose texts in the following
languages: English, French, German, Korean, Russian, Spanish, and
Turkish. Selection criteria for these languages were the global number
of native speakers, sufficient data in the corpus, and diversity in terms
of culture and scripts. As the main task, we chose the classification
of quasi-sentences? into general topical domains. More specifically, a
model needs to learn to classify a text into one of the following eight
topical categories: economy, external relations, fabric of society, freedom
and democracy, political system, social groups, welfare and quality of
life, other. The Manifesto Corpus also contains more fine-grained cate-
gories, but many of them contain only very little data for non-Western

2A quasi-sentence is an entire sentence or a part of a sentence that represents one
semantic unit. If one sentence contains two concepts of interest, it is split into two
quasi-sentences (Merz, Regel, & Lewandowski, 2016).
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languages which are often neglected in the text-as-data literature.?

Secondly, we choose the PImPo dataset on ‘Parties’ Immigration
and Integration Positions’ (Zobel & Lehmann, 2018), which represents a
complex stance detection task. PImPo analyses political parties’ stances
towards two concepts: immigration and integration. For the purpose of
our analysis, we only analyse stances towards immigration. The task for
the model is to identify if a given text is “supportive of immigration”,
“sceptical towards immigration”, “neutral towards immigration”, or
“not about immigration” (four-class classification). All texts that are
about “integration” are added to the “not about immigration” category,
creating hard edge cases for the model to distinguish from texts about
immigration. The dataset was created in a large-scale crowd-coding
exercise, where crowd-workers annotated over 200,000 quasi-sentences
from party manifestos. The data is available in nine languages from
14 (unfortunately only Western) countries?: Danish, Dutch, English,
Finnish, French, German, Norwegian, Spanish, and Swedish.?

By choosing these two datasets, we test our approaches on both a
relatively simple topic identification task with eight classes and a more
complex stance detection task that requires identifying a specific topic
(immigration vs. integration or other unrelated texts) and a stance
towards this topic (positive/negative/neutral). We limit our analysis
to these two datasets due to the lack of publicly available, high quality
and high quantity datasets with multiple (non-Western) languages that
would have fit our comparative high/low-resource comparative pipeline.
Additional details on both datasets are available in appendix A.6

Algorithms. We systematically compare several different algo-
rithms:

3We had originally planned on including other non-Western languages like Japanese,
but eventually did not include them due to lack of data for minority classes and to
limit the complexity of the study.

4The countries are Sweden, Norway, Denmark, Finland, Netherlands, Spain,
Germany, Austria, Switzerland, Ireland, United States, Canada, Australia, New
Zealand.

5The PImPo authors mention ten languages and probably refer to a few Gaelic
texts in the Irish data as the tenth language. As we could only identify 64 Gaelic
texts and none of them were about the topics of interest, we excluded Gaelic from
our analysis.

5The PImPo dataset, for example, is highly imbalanced (96% of texts belong to
the ‘no topic’ class). We therefore downsample the ‘no topic’ class to maximum 2,000
texts per language. Methods for addressing data imbalance have been addressed in
other research (Miller et al., 2020) and we leave more advanced sampling techniques
to future research.
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A Logistic Regression with Bag-of~-Words input and TF-IDF vec-
torization, representing classical computational text analysis ap-
proaches as a baseline (Osnabriigge et al., 2021).

e A Sentence-BERT model which creates sentence embeddings for
each text. These embeddings are then used as the training input
for a Logistic Regression instead of TF-IDF (Licht, 2023).

» A standard BERT-base model directly trained on the (multilingual)
texts (Devlin et al., 2019; P. He et al., 2021).

o A BERT-NLI model trained following the approach from (Laurer

et al., 2023a; S. Wang et al., 2021). For training our multilingual

BERT-NLI model, we created a custom dataset of 2.7 million NLI

text pairs machine translated to 26 languages spoken by roughly 4

billion people. With this dataset, we address the challenge that

NLI data is mostly available in English.”

We choose each of these algorithms for the following reasons: Logistic
Regression with TF-IDF input is a baseline method, that is widely used
in the social sciences; the Sentence-BERT model was used in one of
the first prominent social science papers that uses transformers (Licht,
2023); standard BERT-base is the main baseline for papers investigating
transfer learning; and BERT-NLI is a newer method that tries to push
the limits of transfer learning, also proposed in a recent social science
paper (Laurer et al., 2023a). For each of the three BERT variants,
we test both a monolingual English variant and a multilingual variant.
The exact BERT variants (DeBERTaV3 and MPNet) are detailed in
appendix C. Additional details on preprocessing, hyperparameter tuning
and measures to handle randomness are provided in appendix D3.

Machine translation and data augmentation. As discussed
above, MT can be used as an alternative or supplement to multilingual
representation approaches. First, we test (multilingual) algorithms
with the original, non-translated texts (“no-MT”). Second, we test each
(monolingual) algorithm with texts that we machine-translated to the
anchor language (English, ‘translate2anchor’). Third, we translate each
text to all other languages (‘translate2many’) and train the algorithms on
this augmented input. Each of these three methods are tested for both
the low-resource/one-language scenario and the high-resource/many
languages scenario (see figure 3.1). All translations for this paper were
implemented with open-source transformer-based machine translation

"The dataset is available for download and with more information at: https://
huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7
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models by Fan et al. (2020). Additional details are provided in appendix
B. We control against potential negative effects of noisy data from
these augmentation approaches by testing on human annotated (non-
augmented) test-sets.

This combination of scenarios, algorithms and MT strategies enables
a wide variety of combined approaches: 13 for the low-resource scenario
and 21 for the higher-resource scenario. Appendix D1 displays all
possible approaches and figure 3.1 provides a simplified overview. The
overall objective of this analysis is to provide a systematic review of
which combination of methods performs best with limited amounts
of data, which social scientists typically have at their disposal. For
this first analysis, we use the following criteria for evaluating each
approach: (1) Aggregate performance on the standard metrics accuracy
and Fl-macro;® (2) how (un)equally an algorithm performs on different
languages, measured by the standard deviation of performance across
all languages; (3) ease-of-use for implementing the approach.

3.3.2 Analysis 2: Testing the validity of different compu-
tational approaches

The first analysis focuses on standard performance metrics. While
these metrics provide good indicators of classification performance, the
actual main interest for social scientists is the utility of an approach for
creating substantive insights about social reality. This second analysis
therefore focuses on validity: To what extent do (multilingual) supervised
classifiers actually measure what they are intended to measure?
Validation and the PImPo dataset. There are many different
definitions and sub-categories of validity and the use of the term varies
across and within disciplines (Newton, 2012; Newton & Baird, 2016).
For the purpose of this paper, we assess two types of validity based on
the practical definitions used by Zobel and Lehmann (2018). First, we
assess face-validity, asking: is an algorithm’s prediction about a social
phenomenon in line with theoretically founded expectations about the
social phenomenon? Second, we assess convergent validity, asking: is an

8We base our choice of metrics on the empirical comparison of metrics in (Laurer
et al., 2023a). Accuracy is an easily interpretable metric, but exaggerates the
performance of classifiers overpredicting majority classes. Fl-macro is the harmonic
mean of precision and recall and attributes equal value to all classes, independently
of their size. Assuming that each class has the same substantive value independently
of their size, F1-macro is a better reflection of classifier performance on imbalanced
datasets.
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algorithm’s prediction about a social phenomenon correlated with a dif-
ferent external measurement of the same social phenomenon? The social
phenomenon we analyse for validation is political parties’ positions on
immigration. As an existing external measurement of this phenomenon,
we use the PImPo dataset from the first analysis. We choose the PImPo
dataset for validation, since Lehmann and Zobel themselves provide
validity tests for their crowd-coded data, which we can build upon (2018,
p. 1070). Through these additional validity tests, we go beyond standard
machine learning metrics and conventional definitions of ‘performance’.

Selected approaches for the second analysis. As we will show
below, the first analysis indicates that BERT variants clearly outperform
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the classical Logistic Regression with TF-IDF and that MT for data
augmentation only partly improves performance, while being relatively
unpractical. Based on these observations and following the principle of
parsimony, we exclude the classical Logistic Regression with TF-IDF
and MT for data augmentation from this second analysis. Instead,
we also tested two sizes of BERT in this second analysis: based-sized,
which is the standard size from the first analysis and can be easily
trained on publicly available GPUs; and large-sized, which can still be
trained on publicly available GPUs, but more slowly. We include larger
BERT models in this analysis to tests how advances in algorithms and
hardware will impact validity in the coming years. New transformers
are published every year and this increase in size is a rough proxy of
possible improvements with future smaller language model variants.

Similar to the first analysis we also analyse each approach with
an increasing number of languages for training, in order to study the
impact of increasing multilingual resources: (1) only English training
data (low-resource, monolingual scenario); (2) English and German
(bilingual scenario); (3) English, German, French, Swedish (higher-
resource, multilingual scenario). For each language, we randomly sample
up to 500 texts related to the topics of interest plus an equal amount of
non-topical texts for training” in order to address the high imbalance of
the dataset.

3.4 Empirical analyses

3.4.1 Analysis 1: Machine translation and multilingual
representations

The first analysis investigates advantages and disadvantages of different
combinations of algorithms and MT in terms of multilingual performance
and usability. Figure 3.2 displays the average F1 macro performance
for all 21 possible approaches in the high-resource scenario and 13
possible approaches in the low-resource scenario. The F1 macro values
were calculated by giving each language the same weight and are an
average over three random samples. The error bars display the standard
deviation of F1 macro across all languages. For example, a value of

9Note that this kind of sampling would be more complicated in practical scenarios
and approaches like active learning would be necessary to handle highly imbalanced
datasets. As the focus of this paper is multilingualism and the language barrier, we
leave improved sampling approaches to future work.
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0.03 indicates that the performance for all languages fluctuates around
+/-0.03 above or below the mean performance. We elaborate on our
findings below.

Logistic Regression with TF-IDF vs. (m)BERT. All BERT
variants clearly outperform the Logistic Regression with TF-IDF vector-
ization in the low-resource and higher-resource scenarios.'’ This is not
surprising, as BERT can build upon prior ‘knowledge’ stored in their
parameters, enabling them to learn new tasks faster.

Different (m)BERT variants. First, we find that the best per-
forming BERT is the NLI variant. The only exception is PImPo in the
higher-resource scenario. This is in line with prior research on English-
only data, which shows that the prior ‘task knowledge’ of BERT-NLI
enables it to learn new tasks faster than other BERT variants, while
other variants become better as more data becomes available (Laurer
et al., 2023). Our results show that this also holds for multilingual
scenarios. Second, a surprising finding is that the Logistic Regression
trained on the input from a (non-finetuned) Sentence-BERT performs
similar to the fine-tuned BERT-base and performs more consistently
well on the Manifesto Corpus. This seems surprising at first glance.
One could assume that fine-tuning all parameters in BERT-base would
enable it to specialise more in the specific task, while only fine-tuning a
Logistic Regression on input from Sentence-BERT would not allow for
sufficient adaptation to the task. There are probably two reasons why
the results show the contrary: We used recommended hyperparameters
for BERT-base (and -NLI) based on Laurer et al. (2023a) to reduce com-
putational costs and we assume that the performance of these variants
could have been slightly increased by a hyperparameter search. Based
on the experience by Laurer et al. (2023a) the difference would probably
not be large — BERT-NLI still performs best, although no hyperparam-
eter search was conducted. Second, there is an established stream of
research in the NLP literature showing that fine-tuning only a few new
parameters on top of BERT, while keeping the main body untrained, can
produce similar results as fine-tuning the entire BERT model (Houlsby
et al., 2019; Pfeiffer et al., 2020). This is essentially what we are doing
when training a Logistic Regression on the output from Sentence-BERT.
This finding, also in a multilingual setting, is interesting, as it produces

A1 interesting exception is BERT-base without MT and data augmentation.
We assume its low performance is due to suboptimal hyperparameters. We did not
conduct a hyperparameter search for fine-tuning the BERT models and, especially
when little data is available, this can sometimes lead to model failures.
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Figure 3.2: Average F1 macro performance for all possible approaches on two datasets in two scenarios
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competitive results with a much lower computational budget.

Machine translation for data augmentation.!! MT for data
augmentation tends to improve performance with the ‘mt to anchor’
strategy, but the extensive augmentation with the ‘mt to many’ strategy
is less beneficial. The classical Regression benefits from the ‘mt to
anchor’ translation, as it enables the training of a single model with
a larger quantity and variety of texts for the TF-IDF vectorizer. This
performance cannot be consistently improved by the ‘mt to many’ aug-
mentation, as this creates data in multiple languages and requires the
training of different models for each language, which is impractical.
Moreover, Sentence-BERT + Logistic Regression benefits from data
augmentation in some scenarios, but not in others. This indicates that
it is not clearly beneficial to introduce slight variations to the sentence
embeddings via augmentation.

When fine-tuning BERT-base and BERT-NLI, data augmentation
with MT does improve performance in the low-resource scenario, but
the benefit is less clear in the high-resource scenario. When only very
little data is available, mBERT benefits from the higher quantity and
variety of data introduced through augmentation. It can ingest this mul-
tilingual augmented data, while the same monolingual variant cannot.
At the same time, in the higher-resource scenario with texts from seven
languages, the ‘mt to many’ scenario can even hurt performance. This
is probably because too many (noisy) variations of the same texts are
introduced (500 texts for 7 original languages multiplied by 7 transla-
tions in all other languages). Moreover, we assume that our standard
hyperparameters are not ideally suited for all scenarios ranging from
only 500 up to 24,500 training texts. For monolingual BERT, the best
strategy seems to be translation to the anchor language. This enables
the training of a single model on texts in one language, while both
the no-MT and ‘mt to many’ strategy requires the training of different
models for each language, which decreases average performance. Note
that for monolingual models, the metrics in figure 3.2 are the average
performance of multiple different models for each language.

English vs. Multilingual BERT. Overall, mBERT variants
perform slightly better than monolingual (English) BERT trained on

"The exact train and test data for each scenario are defined in more detail in
appendix D, tables 8 and 9. In figure 2 in the main text, ‘mt to anchor’ refers to
’one2anchor’ in the low-resource scenario and 'many2anchor’ in the high-resource sce-
nario. ‘mt to many’ refers to ’one2many’ in the low-resource scenario and 'many2many’
in the high-resource scenario.
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translated texts. This is probably influenced by multiple factors: First,
mBERT can ingest all (multilingual) texts at the same time. If data in
multiple languages is available (either in the higher-resource scenario,
or through MT augmentation), a single BERT model can be trained
on all languages. With monolingual BERT, a different model needs
to be trained on each language separately with less data, which hurts
performance. Moreover, it is possible that mBERT is better at identi-
fying semantic patterns that are specific to individual languages, while
these nuances are lost through machine translation and English-only
transformers. We do, however, not have sufficient empirical evidence to
substantiate this assumption. Third, for the ‘monolingual’ approaches
with the no-MT or ‘mt to many’ strategy for languages other than
English we were not able to use monolingual BERT variants, as they do
not exist for all languages we analysed. For those that do exist (e.g. Ger-
man and French), the performance would be very hard to compare due
to very diverse design decisions of the creators of specific monolingual
models (different training data, model architectures, hyperparameters
etc.). We therefore only used mBERT in these cases with the respective
monolingual input. These results therefore have to be interpreted with
this caveat in mind. The lack of high-quality BERT variants in languages
other than English is a relevant limitation in deep learning.

Variance of performance across languages. The paragraphs
above only analysed aggregate performance for all languages at the same
time. It is, however, also important to understand if certain approaches
perform particularly well on specific languages, while failing on other
languages. To better understand how (un)equally different approaches
perform on different languages, we therefore also calculated performance
on each language separately and report the standard deviation of per-
formance across languages (indicated by the error bars in figure 3.2, see
also tables 12 & 13 in appendix D3). The standard deviation allows
us to report a single metric, while tables with disaggregated perfor-
mance per language would have been hard to read and interpret. In the
low-resource scenario, the standard deviation for different approaches
is around 0.03 to 0.02 for Manifesto and 0.03 to 0.05 for PImPo. The
difference between approaches is relatively small, but it is noticeable
that high-performance algorithms (e.g. BERT-NLI) perform less equally
across languages, while less performant approaches perform more equally
(and badly) across languages. This indicates that performance increases
can stem more from improvements on specific languages, although the
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differences are not large. Surprisingly, in the higher-resource scenario,
the standard deviation is higher overall (between 0.03 to 0.07). It would
have been reasonable to assume that training data from all languages
also leads to more equal performance on all languages. To the contrary,
adding more data from more languages makes the classifiers’ performance
less equal across languages. It seems like adding more data from more
languages increases the classifiers’ performance on some languages more
strongly while performance on other languages lags behind. Regarding
the different combinations of MT and classification algorithms, we do
not identify clear pattern for which approach systematically performs
more/less equally across languages. In sum, we draw the following pre-
liminary conclusions in terms of classification performance and usability
based on our first analysis:

o« BERT-NLI performs best, especially in the low-resource scenario,
but requires additional experience to implement;

e A Logistic Regression trained on sentence embeddings by Sentence-
BERT performs surprisingly well, while being computationally
efficient and requiring less deep learning experience to implement;

e Multilingual models perform slightly better than monolingual
models. In terms of usability, changing between monolingual or
multilingual BERT effectively requires only changing one line of
code and mBERT can avoid the need for potentially resource
intensive MT;

e Data augmentation with MT improves performance in the low-
resource scenario, but can hurt performance in the higher-resource
scenario where higher quantity and variety of data is already
available. Moreover, especially the ‘mt to many’ strategy requires
additional time for implementation and compute;

e Surprisingly, performance across languages is less equal in the
higher-resource scenario than in the low-resource scenario, indi-
cating that some languages benefit more strongly from more data
from other languages, while others benefit less.
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3.4.2 Analysis 2: Validity test on political stances towards
immigration

The second analysis goes beyond standard performance metrics and
tests the validity of different approaches on parties’ stance towards
immigration. Regarding face-validity, we expect that left-wing parties
are more supportive of migration, and the further to the right a party is
situated, the more sceptical it is of migration (Zobel & Lehmann, 2018).
A valid classifier should therefore produce this theoretically expected
distribution. Regarding convergent validity, the PImPo dataset itself
provides an external measurement of party positions along the left-right
scale. A valid classifier should produce a prediction of party positions
that correlates with the human assessment along the left-right scale in
the full (held-out) PImPo corpus.'?

Figure 3.3 displays the results from our best-performing model
(BERT-NLI) trained on a sample of 1,674 English and German texts!?.
The figure provides a visualisation of the classifier’s output to enable
an assessment of face-validity (right sub-plot) and the output’s corre-
lation with the human ground truth (left sub-plot). Party families are
ordered from left to right on the x-axis. The stacked bar-charts show the
proportions of quasi-sentences that are supportive / neutral / sceptical
towards immigration. For example, when Green parties (‘ECO’) mention
immigration, 78% of mentions are supportive of immigration, 10% are
sceptical, 12% are neutral according to crowd coders. The algorithm pre-
dicted a distribution of 78% supportive, 11% sceptical, 11% neutral. The
proportion of supportive sentences linearly decreases from left to right,
with nationalist parties ‘NAT’ being particularly sceptical. Note that
agrarian (‘AGR’), regional (‘ETH’) and special interest (‘SIP’) parties
are special cases that do not fit the classical left-right scale. The model’s
output shows a linear increase of skepticism towards immigration from
left to right as theoretically expected (face-validity) and it is strongly
and significantly correlated with the human assessment (0.92 average

2Note that the classifier is trained on a small sample from the PImPo corpus,
which makes this validation test not entirely external.

13To sample our training data, we sample up to 500 texts with stances and an equal
number of texts that do not contain a stance towards the topic for each language.
For example, this leads to a training dataset of 674 texts in English: 337 texts with
stances and 337 without, as only 337 texts with stances are available in English. As
more data is available in German, for example, we sample 500 texts with stances and
500 without. This leads to 674 texts for the English-only scenario and 1,674 for the
English and German scenario. For more details, see appendix A2.
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Table 3.1 provides details comparing the different approaches. The
crucial additional metric is the average Pearson correlation coefficient.
We calculated the correlation between the ground-truth proportion of sen-
tences per party family being supportive of migration and the predicted
proportion of sentences per party family being supportive of migration.
We then calculate the same for sentences being skeptical of migration
and neutral towards migration, resulting in three correlations and three
p-values. The correlation and p-value columns are the average of these
three respective values. The table is grouped by algorithm and ordered
from highest to lowest correlation. As an additional test, we also added
a sample extrapolation baseline. For the ‘extrapolation-sample’ row in
the table, we calculated how well the training data sample alone can be
a predictor for the data distribution in the (remaining) full corpus. Note
that there is a relevant difference between correctly predicting overall
proportions (approximated with the correlation coefficient) and correctly
predicting individual texts. We therefore also provide the accuracy and
F1 macro metrics as indicators for performance on individual texts.
For most substantive analyses, the overall proportions in a corpus are
arguably the most important measurement (Zobel & Lehmann, 2018).
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Table 3.1: Correlation of algorithm predictions with human ground
truth, stances by party family

. language algorithm | training average average F1
algorithm . . g accuracy
representation size languages | correlation | p-value | macro
multi base en-de-sv-fr 0.8 0.021 0.48 0.9
multi base en-de 0.79 0.049 0.51 0.9
multi base en 0.62 0.231 0.46 0.88
en large en-de-sv-fr 0.84 0.022 0.51 0.91
BERT-NLI en large en-de 0.92 0.002 0.53 0.92
en large en 0.92 0.001 0.53 0.91
en base en-de-sv-fr 0.89 0.003 0.5 0.91
en base en-de 0.78 0.062 0.52 0.91
en base en 0.78 0.061 0.51 0.9
multi base en-de-sv-fr 0.5 0.138 0.44 0.89
multi base en-de 0.66 0.253 0.43 0.85
multi base en 0.51 0.16 0.45 0.88
) en large en-de-sv-fr 0.7 0.208 0.53 0.93
BEE:;;:‘“G/ en large en-de 0.74 0.144 | 0.52 0.91
en large en 0.68 0.122 0.49 0.89
en base en-de-sv-fr 0.64 0.323 0.47 0.89
en base en-de 0.9 0.003 0.5 0.91
en base en 0.17 0.154 0.33 0.72
multi base en-de-sv-Ir 0.78 0.057 0.47 0.92
multi base en-de 0.74 0.09 0.46 0.9
Sent.-BERT multi base en 0.5 0.2 0.47 0.91
+ Log. Reg. en base en-de-sv-fr 0.24 0.043 0.43 0.88
en base en-de 0.28 0.077 0.46 0.9
en base en -0.08 0.368 0.38 0.84
extrapolation en-de-sv-fr 0.73 0.112
en-de 0.27 0.034
sample en 0.26 0.072

We make the following observations. Several algorithms achieve a
surprisingly high correlation with the human ground truth of party fam-
ilies’ stances towards immigration. BERT-NLI systematically correlates
better with the human ground truth than the other BERT variants.
Surprisingly, as opposed to the first analysis, the standard BERT-base
(or -large) performs slightly better than Sentence-BERT, with one par-
ticularly well performing base-sized model**. Moreover, monolingual

MWe assume that this high performance is linked to a lucky random initialisation
of standard BERT’s task-head. As we have also seen in the first analysis, standard
BERT is more prone to sudden low or high performance when little data is available,
as the task-head is randomly initialized from scratch for the new task. The other
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English BERT tends to correlate better than mBERT. This is partly
due to the fact that good mBERT variants are not available in large
size. Base-sized English BERT also tends to correlate better for the NLI
and standard variant, but the opposite is the case for Sentence-BERT.
Unsurprisingly, larger BERT variants perform better overall, but the
difference is not as large as one could have expected, as also base-sized
BERT can achieve a good level of correlation.

Another surprise is that scenarios with more data from more lan-
guages do not necessarily lead to higher correlations. The two best
performing algorithms were trained on only English or English and
German texts and adding the two languages Swedish and French tends
to reduce the correlation. This can have different reasons. First, when
we add Swedish and French samples to the training data, we need to
remove them from the full test corpus. Unfortunately, the PImPo corpus
only contains very little data for certain languages (see appendix A).
The evaluations for the scenarios with different amounts of training
languages are therefore not directly comparable and changes in metrics
can be due to changes in the test corpus. Second, more data might not
always be better. The discourse in one language on migration might be
very specific and confuse the algorithm or, on the contrary, the discourse
in one language might be particularly representative for other languages
and is sufficient to learn the task. Overall, it is encouraging to see
that texts in only one language (English) from four countries (Australia,
Ireland, New Zealand, United States) can be sufficient to achieve a
significant average correlation of 0.92 with the human ground truth of
party positions in eight other languages and ten other countries.

Moreover, an interesting finding is that the correlation with the
positions of party families is only loosely linked to the machine learning
performance metrics accuracy and F1 macro. One algorithm can have an
F1 macro value of 0.53 and a very high correlation of 0.92, while another
has the same F1 macro performance, but only a correlation of 0.70.
This is even worse for accuracy, which is above 0.9 for many algorithms,
given the high imbalance of the dataset, but the average correlation of a
‘highly accurate’ algorithm can be as low as 0.28. One relevant reason
for the loose link between classification metrics and the correlations is
that we used slightly different data to calculate them. The calculation
of the classification metrics also needed to include the ‘not related to
immigration’ class, which we excluded from the correlation analysis

BERT variants do not have this instability issue.
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following Zobel and Lehmann (2018). This also indicates, however, that
machine learning metrics designed to assess the ability of a classifier
to accurately reproduce classification tasks are not necessarily a good
indicator for how well a classifier can predict a substantively interesting
data distribution like positions towards immigration by party family. As
each substantive use-case has different requirements (different classes
might have different importance, performance on specific subsets of the
data might be more important) it is difficult to recommend a specific
acceptability threshold for these metrics.

3.5 Discussion and conclusion

Our toolkit of accurate, practical and valid computational text analysis
methods is still very much in development. We know surprisingly
little about how to produce valid results that are practically useful
for comparative social science research (Baden et al., 2022). In this
paper, we test several recent innovations from deep transfer learning
to advance our computational toolkit for multilingual social science
research. We demonstrate that, based on these innovations, supervised
classifiers can produce substantively meaningful output. BERT-NLI
trained on only 674 or 1,674 texts in only one or two languages can
validly predict political party families’ stances towards immigration in
eight other languages and ten other countries.

In two interlinked analyses, we asked: what are the advantages
and disadvantages of different algorithms in multilingual settings in
terms of performance and usability? What are the advantages and
disadvantages of combining MT with multilingual BERT? And how
can validity in multilingual text classification be assessed and how do
different approaches impact validity? To answer these questions, we
analysed two datasets with texts in 12 languages from 27 countries with
21 different computational approaches.

We compare each supervised approach based on its performance,
usability and output validity. We find that BERT-NLI performs best,
both in terms of classification performance and output validity. Its
disadvantage is the required computational resources and knowledge for
implementation, and its value is reduced when more than around 2,000
annotated texts are available. Combining Sentence-BERT with a Logistic
Regression could be a computationally cheaper and simpler alternative.
It performs surprisingly well on classification metrics, but surprisingly
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badly in our validation test. The comparison of multilingual or English
BERT led to mixed results. In the first analysis, mBERT tended to
perform better, while English BERT variants were better in the second
analysis. As there is no large difference between the two, we tentatively
recommend using English BERT(-NLI) in multilingual settings with
texts machine translated to English. Working with English texts enables
more researchers to understand the data they are analysing; the quality
of machine translation is constantly improving, with free, open-source
MT models becoming available; and English BERT is available in a
wider variety of sizes, tasks and higher quality. Our attempts to boost
the potential of mBERT by combining it with data augmented with MT
mostly led to improvements in low-resource settings. The additional
effort necessary for the ‘mt to many’ augmentation strategy probably
does not warrant the additional resources and risks of introducing noisy
data. When it comes to validation, we demonstrate that, if applied well,
supervised classifiers can produce valid and substantively meaningful
output.

Based on these findings, we recommend using English BERT-NLI
with machine translation to English if the required expertise is available
in the research team and less than 2,000 annotated texts are available.
Otherwise, we recommend the combination of Sentence-BERT and
Logistic Regression.'® For implementing the BERT-NLI approach, we
recommend re-using the easy-to-use Google Colab code provided in
(Laurer et al., 2023a), which also enabled the analyses in this paper.'6

Our comparative analysis of multilingual supervised machine learning
is, however, subject to several limitations. First, future research should
dive deeper into qualitative analyses of additional reasons for high or low
performance. Second, our second analysis is based on a balanced training
dataset, which would be difficult to create in practice. More advanced
strategies for sampling training data should be further investigated
in future research. Third, we did not explicitly explore questions of
(political) bias. While our findings are encouraging, as our best classifiers
represented stances towards immigration well independently of party
families, more research specifically on political bias in language models
is necessary. Fourth, while we demonstrate the face- and convergent
validity of classifiers using one prominent multilingual example, more

5The Hugging Face SetFit library provides an easy-to-use and more advanced
implementation of this approach: https://github.com/huggingface/setfit
https://github. com/MoritzLaurer/less—annotating-with-bert-nli

56


https://github.com/huggingface/setfit
https://github.com/MoritzLaurer/less-annotating-with-bert-nli

diverse tests on more datasets are necessary to fully understand the
conditions under which supervised machine learning produces valid and
substantively meaningful outputs.

Can we lower the language barrier for comparative research with
supervised machine learning? Yes, our analysis shows empirically that
both deep transfer learning and machine translation enable us to produce
meaningful computational results in multilingual text analysis research.
By using state-of-the-art methods, we can leverage around a thousand
texts in one or two languages to produce results that apply to many
other languages and countries. We hope that future research can build
upon our findings and apply the most promising methods to a more
diverse set of tasks, domains and research questions.

Appendix

The appendix is available online via the published version of the pa-
per: Laurer, M., Van Atteveldt, W., Casas, A., & Welbers, K. (2023).
Lowering the Language Barrier: Investigating Deep Transfer Learn-
ing and Machine Translation for Multilingual Analyses of Political
Texts. Computational Communication Research, 5(2), 1. hitps://-
doi.org/10.5117/CCR2023.2.7.LAUR
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Chapter 4

On Measurement Validity
and Language Models

Increasing Validity and Decreasing Bias with
Instructions

Abstract. Language models like BERT or GPT are becoming increas-
ingly popular measurement tools, but are the measurements they produce
valid? Literature suggests that there is still a relevant gap between the
ambitions of computational text analysis methods and the validity of
their outputs. One prominent threat to validity are hidden biases in the
training data, where models learn group-specific language patterns instead
of the concept researchers want to measure. This paper investigates to
what extent these biases impact the validity of measurements created with
language models. We conduct a comparative analysis across nine group
types in four datasets with three types of classification models, focusing
on the robustness of models against biases and on the validity of their
outputs. While we find that all types of models learn biases, the effects
on validity are surprisingly small. In particular when models receive
instructions as an additional input, they become more robust against
biases from the fine-tuning data and produce more valid measurements
across different groups. An instruction-based model (BERT-NLI) sees
its average test-set performance decrease by only 0.4% F1 macro when
trained on biased data and its error probability on groups it has not seen
during training increases only by 0.8%.

Paper published as: Laurer, M., van Atteveldt, W., Casas, A., €& Welbers, K.
(2024). On Measurement Validity and Language Models: Increasing Validity and
Decreasing Bias with Instructions. Communication Methods and Measures, 1-17.
https://doi.org/10.1080/19812458.2024.2378690
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4.1 Introduction

Do our methods actually measure what we think they measure? This
is the fundamental question of measurement validity. We may believe
to measure ideology in text, but actually measure incumbency (Hirst,
Riabinin, Graham, Boizot-Roche, & Morris, 2014), we may believe
to measure populism in text, but actually only identify party names
(Jankowski & Huber, 2023), or we may believe to measure a flu outbreak,
but actually measure unrelated search terms like “basketball” (Lazer,
Kennedy, King, & Vespignani, 2014). Substantive conclusions drawn
from these invalid measurements can be substantially wrong.

In recent years language models have become an increasingly popular
and accurate measurement tool, but do these models also produce more
valid measurements? Computational social scientists have warned about
the challenges of validity and computational text analysis methods for a
long time (Grimmer & Stewart, 2013) and recent evidence suggests that
there is still a relevant gap between the ambitions of our tools and the
validity of their outputs (Baden et al., 2022). In this paper we try to
narrow this gap, by investigating the relationship between new language
models and validity.

As validity is a very broad and ambiguous term, we specifically focus
on measurement validity as defined by Adcock and Collier (2001) and
how it is impacted by biases in machine learning training data. This
narrow focus is inspired by the natural language processing (NLP) fair-
ness literature, which argues that language models like BERT or GPT
behave like “stochastic parrots” that reproduce (spurious) patterns from
their training data instead of truly understanding the concepts they are
intended to measure (Bender et al., 2021). We follow a group-based
definition of bias, where a model is considered biased if it performs
unequally across social groups. A source of bias can be unequal repre-
sentation of groups in the training data (biased data), where certain
group-specific language patterns are spuriously correlated with the con-
cepts we want to measure (Mehrabi, Morstatter, Saxena, Lerman, &
Galstyan, 2021). This group-based bias is particularly problematic for
social science research, as social scientists often need to validly measure
complex concepts across different types of social groups such as countries,
milieus or languages, while working with real-world training data that
is never perfectly representative. While there is ample research in the
NLP literature about bias, there is little empirical research by social
scientists on how bias impacts measurement validity and how its impact
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on validity can be mitigated.

Given this gap in the social science literature (Baden et al., 2022), this
paper empirically investigates the research questions: To what extent do
biases in fine-tuning data impact validity in supervised machine learning
for social science tasks (RQ1)? How robust are different supervised
machine learning approaches against biases in fine-tuning data (RQ2)?
Do meaningful instructions for language models reduce bias and increase
validity (RQ3)?

We start by discussing measurement validity (social science literature)
and its link to bias and robustness (NLP literature). We then discuss
limitations of the standard training paradigm in supervised machine
learning and theorize about instruction-based models as a solution
to decrease bias and increase validity. Instruction-based models are
language models that receive explicit instructions for their task verbalised
in plain text in addition to the fine-tuning data. We theorize that an
explicit verbalisation of the task and the concept of interest helps a
model learn the task more robustly and reduces the model’s reliance
on spurious group-specific language patterns from the fine-tuning data
(section 2).

We test our assumptions empirically, by analysing the interaction
between bias and test-set performance of different models (section 3 and
4). We fine-tune three types of text classifiers on texts from four datasets
and nine different group types under different conditions, resulting in
312 different fine-tuning runs.! Our results show that all types of models
are susceptible to learning group-specific language patterns and that
fine-tuning on biased data (from one group, e.g. one country) reduces
performance on representative test sets (from all groups).? On average,
however, these effects are surprisingly small. In particular, we show that
models receiving instructions as an additional input are particularly
robust against biases from the fine-tuning data and are more likely to
produce valid measurements across different groups. A language model
without instructions (BERT-base) sees its average test-set performance
decrease by 1.7% F1 macro when trained on biased data compared to
random data. Its probability of making an error on groups it has not
seen during training increases from 26% to 31.1%. An instruction-based

!The full reproduction code and data is available at https://github.com/
MoritzLaurer/language-model-bias-validity

2By “group type”, we refer to a group category in the data like “country”, “political
party” or “decade”. By “group”, we refer to a member of a group type. France or
Germany are groups within the group type “country”.
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model (BERT-NLI) sees its performance drop by only 0.4% F1 macro
when trained on biased data and its probability of making an error on

groups it has not seen during training increases only from 18.5% to
19.3%.

4.2 Measurement validity and bias in computa-
tional text analyses

4.2.1 Measurement validity and supervised machine learn-
ing

Validity is a notoriously ambiguous term. Adcock and Collier “have
found 37 different adjectives that have been attached to the noun ‘valid-
ity’ 7 (2001, p. 530).2 For the purpose of this paper, we use the term
“measurement validity” as the main type of validity based on Adcock
and Collier (2001). Their conceptualization is broadly applicable to qual-
itative and quantitative research, and we show that it also provides an
excellent organizing framework for computational text analysis methods.

Simply put, a measurement is valid, when it actually measures
what the researcher wants it to measure (Adcock & Collier, 2001). To
systematize this definition, it is helpful to make the process of mea-
surement explicit using the example of a supervised machine learning
(SML) project. SML projects in the social sciences normally start with
a substantive research interest that requires the measurement of a back-
ground concept. The background concept could be ‘populism’ The
substantive research question could be whether ‘populism’ increased
across time and countries during the COVID-19 pandemic. As a first
step, researchers then need to narrow down the background concept
for which many different definitions exist (level 1 in figure 1), into a

3This is maybe unsurprising as the term is widely used by different disciplines and
has unavoidably become part of contestations of how to conduct scientific inquiry.
The term was coined in the 1950s by the psychology literature with the typology of
content, criterion and construct validity and later converged to a unitarian definition
of construct validity as the overarching term (Adcock & Collier, 2001, p. 536-537).
The causal inference literature emphasizes the terms internal and external validity
(Cook & Campbell 1979, based on Adcock & Collier, 2001, p. 529). The content
analysis literature discusses at least 12 different types of validity (Krippendorff, 2018).
The political science text-as-data literature uses yet another set of complementary, but
also different terms (Benoit, 2020; Grimmer, Roberts, & Stewart, 2022; Grimmer &
Stewart, 2013). Only very few interdisciplinary efforts for harmonizing terminologies
from a computational perspective exist (Jacobs & Wallach, 2021).
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systematized concept with a clear definition (level 2). They could, for
example, follow an ideational definition of ‘populism’ where politics is
seen as a struggle between the virtuous and homogeneous people and the
selfish and corrupt elites (Cocco & Monechi, 2021, p. 3). The researchers
then need to operationalize this concept to create a quantitative in-
dicator (a measurement) of ‘populism’ (level 3). They could decide
to measure expressions of populist ideas in texts and operationalize it
by counting the occurrence of populist sentences in party manifestos.
To implement this operationalization, they would create a codebook
with instructions for identifying “populist” vs. “non-populist” language.
Based on this codebook, research assistants could then annotate (‘score’)
several hundred sentences based on the pre-defined classification scheme
(level 4). If the full textual corpus is too large for manual annotation,
the researchers could then train a supervised classifier to automatically
classify (‘score’) the remaining sentences in the full corpus of thousands
of party manifestos. The researchers then need to aggregate the clas-
sifier’s predictions for individual sentences (‘scores’) into the indicator,
for example by calculating the proportion of populist sentences relative
to all sentences per year and per country.? The resulting indicator
(the measurement) then enables statements such as “in year Y parties
from country A used more populist language than in year Z or than
in country B”. If everything went well, this indicator provides a valid
measurement of populism. That is: an increase in the indicator indicates
a real increase in populism (as defined by the researcher) in a given
country or year.

It is probably obvious to the reader that many things can go wrong
during this process. Problems at any level can impact validity and
therefore skew substantive conclusions. The key objective of validation
is to ensure that this does not happen.® As there is a broad literature
on measurement validity, this paper only focuses on two specific as-
pects linked to measurements derived from supervised machine learning
models: First, we investigate how group-based biases in the training
data can impact the scoring error at level 4. Second, we hypothesize

“Note that Adcock and Collier (2001) add a "Refining Indicators” step here, where
the classification scheme can be refined during initial iterations over the data.

®Note that we follow (Adcock & Collier, 2001) in only using one overarching
term for ‘validity’ (measurement validity), while there are different procedures of
‘validation’, which help establish measurement validity. The text-as-data literature
uses roughly four validation procedures: Content validation, test-set validation,
hypothesis validation and correlation validation.
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Measurement

Figure 4.1: Main steps for creating a valid measurement
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Level 3. Indicators
Also referred to as “measures” and “opera-
tionalizations.” In qualitative research, these
are the operational definitions employed in
classifying cases.
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light of insights about scores and indicators.
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Task: Refining Indicators
Modifying indicators, or potentially creating
new indicators, in light of observed scores.

\

Figure from Adcock and Collier (2001, p. 531)

that instruction-based models can create a systematic link between the
scoring process (level 4) and the systematized concept (level 2), further
reducing measurement error and increasing validity. As the main type
of validation in this paper, we use test-set validation combined with
additional statistical tests.
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4.2.2 Robustness against group-specific patterns as a pre-
condition for validity

Why are group-specific patterns relevant for validity? In the standard
machine learning process, the only source of information for learning the
concepts of interest and the related scoring task is the training data. A
classical logistic regression or support vector machine does not have any
prior knowledge about language, our task or concepts. Everything it
learns about our concept of interest comes exclusively from the training
data. This is similar for models like BERT if they are trained following
the standard pre-train-fine-tune paradigm (Devlin et al., 2019). While
BERT models have language knowledge from their pre-training phase, a
large part of the information about our task comes from the fine-tuning
data (Laurer et al., 2023a). Both a logistic regression and BERT-base are
designed to find any pattern in the training data that help them reduce
their error on their training data. They can be seen as “stochastic
parrots” (Bender et al., 2021). These models can only fully learn a
concept of interest, if the training data comprehensively represents all
ways of expressing the concept of interest.® This ideal scenario is quite
unrealistic (figure 2, left). A more realistic scenario is illustrated in
the right part of figure 2. In practice, researchers will have access to
imbalanced data from a few social groups (e.g. specific countries) and the
machine will try to learn the concept of interest from the (group-specific)
patterns in this data. This can work well, if the concept should only
be measured in these specific groups, but it will work less well on data
from groups outside of the training data that express the same concept
differently (distribution shift, see Ruder (2019)). 7 This directly impacts
measurement validity: measurements are only valid if they measure
what we think they measure.

There is a broad literature on how machine learning models rely on
simple patterns (shortcuts) in their (pre)training data to solve their tasks,
instead of truly understanding the underlying task and concept (Du, He,
Zou, Tao, & Hu, 2022). Language models like BERT one-sidedly base
their predictions on specific keywords (‘lexical bias’), the positioning of
words e.g. if predictive words always occur in the beginning of the text

5A BERT-base model can only partly mitigate this issue through its prior language
knowledge of synonyms etc.

"Note that figure 2 only illustrates a binary classification task for identifying if
a text contains one concept or not. In practice, most classification tasks comprise
multiple classes, which further increases complexity.
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Figure 4.2: Semantic space and possible training data distributions
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Left: The ideal training data distribution covers all main ways of expressing
the concept of interest. Right: A more realistic distribution where several
(group-specific) ways of expressing the concept of interest are missing. The grey
area represents the entire semantic space for expressing the concept (a single
class). Red dots represent individual training data points. Red dots outside of
the grey area do not represent the concept of interest (e.g. another class).

(‘position bias’), overlapping terms for bi-text tasks (‘overlap bias’), or
specific writing styles that are irrelevant for the semantics of the task
of interest (‘style bias’). These biases remain hidden during test-set
validation, if the test data is sampled from the same distribution as the
(biased) training data. A model can successfully rely on these shortcuts,
as long as they also work in the data to be analysed. In many practical
contexts, however, the performance of these models will be reduced,
if the data to be analysed comes from a different data distribution.
Patterns learned from training data from one type of text might not
work on other types of texts. These issues are also often discussed under
the terms “robustness” against spurious patterns or “generalisation”
beyond the training data (X. Wang, Wang, & Yang, 2022).
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Situations where these shortcuts and spurious patterns are linked
to specific social groups are analysed in the fairness literature (Caton
& Haas, 2020; Mehrabi et al., 2021; Pessach & Shmueli, 2022). A
common view is that a model is fair (unbiased), if it performs equally
across different social groups and unfair (biased) if it performs worse
on specific groups (such as different countries). A classifier can, for
example, perform worse on texts in specific languages or countries. The
fairness literature proposes several different methods for identifying and
remedying biases, from disaggregating metrics by groups, to different
data pre-processing or post-processing techniques (Caton & Haas, 2020).
One key dilemma is that methods for increasing fairness tend to increase
measurement error (Caton & Haas, 2020, p. 18) and therefore impact
measurement validity. There are some social science papers investigating
the issue of spurious patterns for supervised machine learning (Hirst
et al., 2014; Jankowski & Huber, 2023), but viable solutions are still
lacking in our toolkit.

4.2.3 Increasing robustness and validity with instructions

How can this issue be addressed, where models learn spurious patterns
and biases instead of the actual concept we want to measure? We argue
that the standard training or fine-tuning procedure is at the core of these
issues of bias and validity.® From a validity perspective, the information
the model receives during standard fine-tuning is incomplete. The only
two types of inputs the models receive during fine-tuning are (1) N
example texts and (2) a meaningless numeric label attached to each
text representing one of K classes. By pure design of this procedure,
the model is then forced to search for any patterns in the example texts
that allow it to separate the texts into these K classes.

This is effectively equivalent to the following scenario: Imagine we
want to measure eight types of emotions in a large corpus of a million
social media posts. We recruit crowd workers from the internet to help
us analyse these texts. To teach them about our task and concepts,
we send them an email with a few hundred example texts that have
been categorised into one of the eight emotions. In the texts we send,
the category for each text is only indicated by a number in the title.
We do not provide any explanation what the task and categories are

8Note that our argument applies both to training classical models like logistic
regressions as well as standard fine-tuning of BERT models. We therefore use the
terms ‘standard fine-tuning’ and ‘training’ synonymously for simplicity in this paper.
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about. Only based on a few hundred texts and numbers, how many
crowd workers would understand that we want to measure eight specific
types of emotions from a specific psychological theory? While sending
numbered texts without any explanations or definitions would obviously
be a bad teaching process for human learners, this is effectively how the
standard training procedure teaches a task to a model. In the case of
a logistic regression, the learner is a simple equation that has no prior
knowledge of language or the task we are interested in (an illiterate and
ill-instructed parrot). In the case of BERT, it is a more complex set
of equations and matrices that represent language, but without prior
knowledge of the task we are interested in (a literate but ill-instructed
parrot). It seems unsurprising that these learners can produce invalid
measurements.

This is why, in practice, a key additional input for teaching a task
to human annotators is a codebook with clear definitions of the concept
of interest. Throughout the annotation process, a diligent research
assistant or crowd worker can refer back to the codebook and anchor their
annotation decisions in the explicit definitions of complex constructs.

The instruction paradigm from the NLP literature provides a way to
implement a similar process with language models (Lou et al., 2023).% Tt
follows almost the same steps as the pre-train-fine-tune paradigm, only
that models are fine-tuned with task instructions as an additional, third
input. Several different variants of this approach exist, from instructing
GPT models (Brown et al., 2020; OpenAl, 2023b), to prompting masked
language models like BERT (Schick & Schiitze, 2021a), to combining
universal tasks like Natural Language Inference (NLI) with BERT models
(Laurer et al., 2023a; Yin et al., 2019). In the NLP literature, these
methods have mostly been discussed from the perspective of 0-shot or
few-shot learning and only a few papers have investigated the robustness
benefits of instruction-based models (Raman, Maini, Kolter, Lipton, &
Pruthi, 2023). Only very few papers have applied instruction-based
models in the social sciences (Argyle et al., 2023; Laurer et al., 2023a;
Laurer, Van Atteveldt, Casas, & Welbers, 2023b). We are not aware of
a single paper investigating a systematic link to measurement validity.

From a validity perspective, the interesting feature of instruction-
based models is that definitions of systematized concepts can be directly
provided to the model as instructions. In practice, this means that
the model is always fed a third input in addition to the standard two:

9A strand of literature uses the word “prompts” instead of “instructions”.
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(1) the text we want to analyze, (2) the desired output (e.g. a class
label) and (3) instructions written in plain language, such as “Does this
text contain populist language, describing ‘the people’ as virtuous and
homogeneous or ‘the elites’ as selfish or corrupt?”.

We theorize that this can provide a direct means for increasing
the validity of supervised machine learning by directly linking level 2
with level 4 (figure 1). In this paper, we analyse the robustness of
instruction-based models against group-specific language patterns and
the consequences for validity. More specifically, we hypothesize that the
instructions provide additional meaningful information to the model,
enabling it to better learn a new concept of interest while relying less
on patterns from the fine-tuning data.

This hypothesis is, however, controversial. Evidence from the NLP
literature does indicate that instruction-based models are more robust
against spurious patterns from fine-tuning data, but some argue that this
is linked to specific algorithmic properties of instruction-based models
instead of the semantics of instructions (Raman et al., 2023; Webson &
Pavlick, 2022). Fine-tuning a standard BERT-base on a new task entails
deleting the task-specific head of the model and randomly reinitialising a
new task head for the new classification task. Instruction-based models,
on the other hand, re-use all their parameters for new tasks and do not
need to reinitialize parameters. Raman et al. (2023) argue that it is this
algorithmic difference that makes instruction-based models more robust
against spurious patterns in training data instead of the semantics of
instructions. We test both possible explanations empirically below.

4.3 Study design

We conduct our experiments on four datasets and nine types of groups
(see table 1). Criteria for choosing datasets were: relevance for social
science research; different types of tasks and concepts; texts from a
diverse set of domains; availability of metadata for splitting the data in
different social groups; and sufficient quantity of data for training and
testing across data splits for different groups.

We compare the following classification models:

« Logistic regression as a representative for classical machine learning
approaches (illiterate and ill-instructed parrot);

o DeBERTa-v3-base as a representative of standard transfer learning
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Table 4.1: Overview of datasets used in the study

Dataset Task & Concepts Text domain Groups Data size
PImPo (Zobel Identify stances towards Party 10 party Train: 87168
& Lehmann, Immigration/Integration (4 classes: manifestos families, 14 Test: 6792
2018) supportive, sceptical, neutral, or countries, 3

not about immigration/integration) decades
CoronaNet Identify four types of policy Texts written 197 countries,  Train: 15326

(Cheng et al.,  measures against COVID-19 by research 6 continents, 3  Test: 3832
2020) (‘Public Awareness Measures’, assistants and  years
‘Restriction and Regulation of copied from
Businesses’, ‘Restrictions of Mass news sources
Gatherings’, ‘Health Resources’)
CAP-SotU Identify five topics UsS 2 phases Train: 9248
(Project, (‘Macroeconomics’, ‘Government presidential (pre/post Test: 2313
2015) Operations’, ‘Defense’, speeches 1991), 2
‘International Affairs’, ‘Health’) parties
(democrats/
republicans)
CAP-2 Identify five topics (‘Domestic Us 2 domains Train: 7708
(CAP-SotU Commerce’, ‘Law and Crime’, presidential (speeches / Test: 1928
merged with ‘Civil Rights’, ‘Labor’, ‘Government  speeches & US  legal text)!
CAP-Court) Operations’) court rulings
(Project,
2014)

! These two types of domains are not social groups, but we include them to test
a scenario where the language between two groups of text is particularly
different. This type of hard domain shift is a common challenge.

approaches (literate but ill-instructed parrot). DeBERTa-v3 is a
BERT variant that strongly outperforms the original BERT model
(P. He et al., 2021). We refer to it as ‘BERT-base’ in the remainder
of the text for simplicity;

DeBERTa-v3-base fine-tuned for the universal Natural Language
Inference task (‘BERT-NLI’) as a representative for instruction-
based approaches (literate and instructed parrot). BERT-NLI
can ingest instructions in the form of “class hypotheses”. For a
stance detection task, for example, the class hypotheses could
be “This text is positive towards the military” and “This text
is negative towards the military”, which are fed into the model
as a third input. See Laurer et al. (2023a) for a more detailed
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explanation. The exact instructions used for each dataset are
provided in appendix B. All experiments are run twice: once with
meaningful and once with meaningless instructions. We call the
second version BERT-NLI-void for short, as it receives instructions
that are void of meaning.'”

For all these datasets and classifiers, our experiments are then de-
signed around our three main research questions.

1. To what extent do biases in fine-tuning data tmpact validity in
supervised machine learning for social science tasks?

We approximate the impact of group-based biases in the fine-tuning
data on validity in two steps: First, each classification model is trained
on texts sampled from only one group (e.g. only one country, “biased
condition”). Second each model is also trained on texts randomly
sampled across all groups (“random condition”). Classifiers from both
conditions are then tested on the same fully random held-out test set
that represents the dataset’s real data distribution across all groups
(see Appendix D for the data distributions of all datasets). We expect
classifiers trained under the biased condition to perform less well on a
representative test set, as these “biased” classifiers could only learn the
concept of interest from the language of one group, making it harder
to extrapolate to other groups during testing. We conduct test-set
validation with the standard classification metric F1 macro.'! We call
the difference in F1 macro between the biased and random condition for
the same classifier the “bias penalty”. This bias penalty indicates the
loss in a classifier’s ability to measure a concept of interest under biased
conditions, i.e. when it only has access to language patterns from one
group during training.

This study design simulates extreme situations of bias in the training
data by only sampling from one group, while in practice researchers will
often have access to data from more groups. This setup is designed to
give us a clear idea of the impact of bias from group-specific language
patterns. Another reason for this choice is to enable comparability across

The exact BERT-NLI model used is available at https://huggingface.co/
MoritzLaurer/deberta-v3-base-zeroshot-vi

1'We use this metric because it gives equal weight to all classes. Class imbalance is
an important issue in the social sciences and we assume that each class has the same
substantive value independently of its size. See Laurer et al. (2023a) for an in-depth
discussion of different classification metrics for social science use-cases.
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different datasets, as two of our datasets only have group types with
maximum two groups (see table 1).12 Also note that this paper focusses
on analysing the difference in robustness of different types of classifiers
against biases across datasets and the role of instructions, instead of the
reduction of bias in a specific case-study.

Each model is always trained with 500 texts with balanced classes.
Sampling with balanced classes is important, because prior research
has shown that certain models perform better on imbalanced classes
than others (Laurer et al., 2023a). As we want to compare which model
is more robust against biases from group-specific patterns, we need to
eliminate class imbalance as an intervening variable from the training
data. A negative side-effect of this is that we cannot increase our training
data above 500 texts. Some groups have very little data for some classes
and with 500 texts there are still enough groups that have enough texts
for minority classes.

To reduce the influence of randomness, we repeat our training runs
across 6 random seeds. In total, we train 3 types of models on 4 datasets,
9 types of groups, 2 degrees of bias (biased vs. random training data),
across 6 random seeds. This leads to a total of 312 fine-tuned models
and test-set results for testing the impact of group-based biases. Note
that we do not conduct hyperparameter searches for our experiments
and use the recommended parameter values determined by an extensive
hyperparameter search by Laurer et al. (2023a), as a hyperparameter
search across this wide range of configurations (models, datasets, groups,
bias) runs would be prohibitively expensive.

We acknowledge that test-set validation is only one procedure for
ensuring measurement validity. Ensuring measurement validity is a com-
plex multistep process that is specific to each measure and use-case (see
section 2.1 and figure 1). For the purpose of our study across different
datasets, we have to assume that these steps were well implemented for

120nly for the CoronaNet country group type, we sample from three groups instead
of one due to the low number of texts per country. The dataset contains very
little data from individual (smaller) countries. Biasing the training data with three
countries allowed us to introduce more biases from smaller countries.

3We also note that the effects of bias are already relatively small even if the
training data comes from only one group. This is a central finding of this paper (see
section 4). We had tested other experimental designs for analysing biases, such as
introducing meaningless spurious tokens into texts. While these designs can show
clear susceptibility to spurious language patterns and are used in the NLP literature,
they are also less realistic. We therefore opted for analysing group-specific language
patterns, which are more relevant for social scientists.

72



each dataset. Given this assumption, test-set validation with classifica-
tion metrics is a good validation procedure that can be implemented
comparatively across multiple datasets.'4

2. How robust are different supervised machine learning approaches
against biases in fine-tuning data?

For our second analysis, we dive deeper into the bias of different
classification models by analysing their classification predictions on the
test data with a binomial mixed-effects regression. This analysis only
uses the test results from the intentionally biased classifiers that were
trained on data from one group.!> We use the following variables: The
(binary) dependent variable is the classification error, i.e. whether a
given classification model made a mistake on a given test text or not.
The first (categorical) independent variable is the type of classifier, i.e.
whether the classification prediction was made by a logistic regression,
BERT-base or BERT-NLI. The second (binary) independent variable is
whether the respective test text comes from the same group the classifier
was trained on or not. If a row in our test data frame contains a prediction
on a text from group A by a classifier that was also (only) trained on
group A, we flag it as a “biased row” in our tabular data frame. Besides
these two fixed effects, we also add a random effect to the binomial
regression: the training run. We trained all types of classifiers multiple
times across six random seeds for each group to account for randomness
in classifier fine-tuning and therefore obtain multiple test results per
classifier from six different training runs (see details below). To account
for the non-independence of these observations and this hierarchical
structure in our data, we include the identifier of the training run as a
random effect in the mixed-effects regression.

The resulting binomial mixed-effects regression enables us to analyse
the effect of classifier type and bias on the error in the test data. The
interaction between classifier type and biased rows results in odds ratios
which let us draw conclusions on the degree of bias of different classifier

types.

QOther types of validation beyond test-set validation exist (e.g. content vali-
dation, hypothesis validation, correlation validation), but they cannot be properly
implemented in a comparative study design across datasets.

5More concretely, the underlying data are 922224 observations (i.e. predictions on
test-set texts) from the 3 types of models on 4 datasets, 9 types of groups across 6
random seeds from the biased condition form the first analysis.
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3. Do meaningful instructions for language models reduce bias and
increase validity?

Lastly, we test the hypothesis that meaningful instructions provided
to language models can function similarly to instructions provided to
crowd workers, reducing group-based biases and increasing validity. For
BERT-NLI, the researcher manually formulates short instructions that
verbalize each class based on the codebook that guided human annota-
tors.'® For example, for the PImPo dataset, one instruction is “The text
is sceptical of immigration/integration”. To test our assumption, we need
to test if it is actually the semantics of these instructions that improve
our metrics, or other algorithmic properties of BERT-NLI. We therefore
repeat all BERT-NLI training runs with meaningless instructions, such
as “The text is about category A”. See appendix B for all instructions
used.

4.4 Empirical analyses

RQ1: To what extent do biases in fine-tuning data impact validity in
supervised machine learning for social science tasks?

We conduct test-set validation with the standard classification metric
F1 macro under a biased condition and a random condition (see red and
blue dots in figures 3 and 4). The “bias penalty” is the difference in
F1 macro between the biased and random condition, i.e. the distance
between red and blue dots. The aggregated results in figure 3 show that,
on average across all groups, the bias penalty is highest for the logistic
regression classifier (2.3 percentage points) and shrinks from BERT-base
(1.7%) to BERT-NLI (0.4%). The bias penalty for BERT-NLI is the
smallest, indicating that its performance is least reliant on group-specific
language patterns. Moreover, in line with previous research (Laurer et
al., 2023a, 2023b), we find that BERT-NLI performs best in terms of
absolute test-set validation. BERT-NLI is best at learning the underlying
concept of interest, while especially the logistic classifier fails to properly
learn the classification tasks in the low data regime of 500 training texts.
Note that we expect the difference between models to shrink as a higher
quantity and diversity of texts is provided (Laurer et al., 2023a).

18Tn the case of BERT-NLI, these instructions are normally called “hypotheses”.
See Laurer et al. (2023a) for more details.
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Figure 4.3: Test set validation and bias penalty in aggregate

F1 macro averaged over all datasets and groups | |Bias penaltyl
logistic reg. —_—
BERT-base 4 ——
BERT-NLI-void 4 ——
BERT-NLI4 —e—
0.50 0.55 0.60 0.65 0.70 0.75 —-0.0250.000
Training data sampling strategy Biased Random

Figure 4 provides a more nuanced, disaggregated picture per group
and dataset. The error bars display the standard deviation across six
random runs with different random seeds and groups. For some datasets
and groups, the bias penalty is very small while it is larger for others.
We also notice that for a few combinations (PImPo and CAP-SotU by
party), some models perform on average better when trained on biased
data. We assume that this is partly due to randomness and partly
due to imbalance across groups in the test data. As the test data is
randomly sampled from real-world datasets, it contains more data from
some groups and little from others. The PImPo dataset, for example,
contains more texts from certain party families because they talk more
about migration and little data from others. For some groups with very
little data, we could not sample 500 class balanced training texts and
they were not included in the biased training runs. Depending on the
dataset, the groups sampled for training can therefore also constitute the
majority groups in the test data, which can explain that the performance
of biased classifiers is sometimes higher than the classifiers trained on
randomly sampled texts. We dive deeper into the issue of bias in the
following analysis.
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Figure 4.4: Test set validation and bias penalty by group types
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RQ2: How robust are different supervised machine learning approaches
against biases in fine-tuning data?

We used a binomial mixed-effect regression model to test the effect
of group-based biases, and compare this effect across classifiers. For this
analysis we look more closely at the errors in the biased training runs
(represented by the red dots in the preceding figures). Our model shows
how much more likely it is for a classifier to make an error if the test text
comes from a group that the classifier has not seen during training. We
argue that the strength of this effect serves as a measure of group-based
bias, because decreased error on groups seen during training indicates
reliance on group-specific language patterns. We fit this model to data
from all classifiers, and used interaction effects to test and compare this
effect across classifiers. For each classifier we pooled runs from all six
random seeds and all datasets, and included random intercepts for every
combination. We thereby measure the average effect of group-based
biases across different classifier types.

Figure 5 presents the odds ratios for how less likely an error is on
data from groups seen during training (right), as well as the corre-
sponding error probabilities (left). The red dots represent the classifiers’
probability of making an error on test data that comes from the same
group as the classifier has been trained on, while the blue dot represents
the error probability on data from groups the classifier has not seen
during training. The full regression tables and the figure disaggregated
by group are available in appendix A.

For the logistic classifier, we see that the odds of making an error
decrease by a factor of 0.84 (SE: 0.01, p < 0.001, 95% CI [0.82, 0.85])
when the text comes from the same group the classifier has seen during
training. This is a clear indication of bias. In other words, the probability
of making an error on text from groups it has not yet seen during training
is 40%, while the probability of making an error on texts from groups
it has seen during training is decreased to 35.8%. In accordance with
our theoretical expectation from section 2, this bias effect is lowest for
BERT-NLI. For BERT-NLI, the odds of making an error on biased texts
only decrease by a factor of 0.95 (SE: 0.01, p < 0.001, 95% CI [0.92,
0.97]), i.e. from an error probability of 19.3% to 18.5%. Interestingly
enough, the most biased model is BERT-base. BERT-base’s odds of
making an error are reduced the most by a factor of 0.78 (SE: 0.01, p
< 0.001, 95% CI [0.76, 0.80]) on texts from groups it has already seen
during training (26% probability of error) compared to groups it has
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not seen during training (31.1% probability of error). This indicates
that BERT-base makes less mistakes than the logistic classifier overall,
but a part of its performance advantage comes from learning more
group-specific language patterns (overfitting).

To answer our second research question: all classifiers rely on group-
specific language patterns to some extent. BERT-base overfits most
strongly to these patterns. The logistic classifier relies slightly less on
these patterns, but its lower ability to learn language patterns leads to
the highest error rate overall. BERT-NLI is only marginally biased by
group-specific language patterns and makes the least errors overall.

RQ3: Do meaningful instructions for language models reduce bias and
increase validity?

The results discussed above show that BERT-NLI is both less biased
and performs better in terms of test set validation compared to a classical
classifier and BERT-base. Why? One potential reason discussed in
section 2 is that the instructions provided to the language model convey
meaningful additional information and therefore reduce dependency on
language patterns from the training data for learning a new task. An
alternative explanation is that it is not about the meaning of instructions,
but the fact that instruction-based models do not need to randomly

Figure 4.5: Error analysis and bias

Odds ratio of error on
Probability of making an error group seen during training
VS. Unseen groups
logistic reg. 4 ——
BERT-base A ——
BERT-NLI-void A ——
BERT-NLI 1 ——
0.20 025 030 035 0.40 0.80 0.85 0.90 0.95
Test text from same group as training texts? Yes No -e— Odds ratio
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reinitialize some parameters for new tasks (see section 3). To test these
different explanations, we now look at the results for BERT-NLI trained
with meaningless instructions (BERT-NLI-void).

Based on the empirical results above, we conclude that both mecha-
nisms contribute to BERT-NLI’s improved performance (partially con-
tradicting Raman et al. (2023)). We find that BERT-NLI-void is slightly
less biased than BERT-base in our regression analysis (figure 5) and it
also performs better in terms of F1 macro with a smaller bias penalty
(figure 4). BERT-base and BERT-NLI-void use the same underlying
model and the only main difference are the training procedure with
meaningless instructions. This indicates that the fact that BERT-NLI-
void does not randomly re-initialise and re-learn task-specific parameters
is an advantage over BERT-base. This effect is entirely unrelated to
the meaning of instructions. At the same time, BERT-NLI-void is still
forced to find any pattern in the training data to solve a task, because
instructions like “This text is about category A” do not provide addi-
tional useful information. With meaningful instructions, BERT-NLI
performs better both in terms of bias and overall F1 macro. As the only
main difference between BERT-NLI and BERT-NLI-void is the meaning
of the instructions, we conclude that the meaning of the instructions
also contributes to its performance. Adding instructions such as “This
text is positive towards immigration” make the model less dependent
on learning patterns from the training data to understand new the task.
Note that this does not mean that the model gains a deep understand-
ing of the task like a research assistant. It does mean, however, that
words like “positive” and “immigration” in the instruction enable the
model to go beyond only patterns in the training data and leverage its
internal representations of language to understand that the new task
must have something to do with sentiment and migration according to
the instruction text.

This is also linked to another, more mechanistic difference between
BERT-NLI and both BERT-base and BERT-NLI-void. Based on the
hyperparameter search by Laurer et al. (2023a), we need to train BERT-
base for many more epochs to achieve optimal performance compared
to BERT-NLI. One epoch represents one iteration over the training
data. Too many epochs lead to overfitting (the model relies too much
on the patterns from the training data), while too few epochs mean
that the model does not learn the new task properly. BERT-base and
BERT-NLI-void need more time to find useful patterns in the data that
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help them optimise for the new task and are therefore trained for more
epochs. BERT-NLI has the instructions as a source of information and
therefore needs less iterations over the training data to learn the new
task. This is another reason why BERT-base (and BERT-NLI-void)
overfit more easily to group-specific language patterns from the training
data. We could train BERT-base for less epochs, which might reduce its
biases, but would make it perform worse overall (see all hyperparameters
in appendix C). BERT-NLI already learns the new task well with very
few epochs, making it less prone to overfitting.

4.5 Limitations and discussion

Our analyses are subject to several limitations. First, we only analyse
BERT-like Transformers (encoders) and no GPT-like generative Trans-
formers (decoders or encoder-decoders), which have gained increasing
popularity throughout 2023. GPT-like models are similar to BERT-NLI:
they can also ingest instructions as a third input and they also re-use
prior task knowledge from a universal task (next-token-prediction). We
do not analyse GPT-like generative models in this paper for two main
reasons. First, we are interested in creating measurements through text
classification, while GPT-like models are designed for generative tasks
and not specialised in classification. While any classification task can be
reformulated as a generative task, generative models need to be much
larger to obtain the same text classification performance as BERT-like
models (Schick & Schiitze, 2021a; H. Xu et al., 2023). If we are only
interested in creating measurements through classification, BERT-like
classifiers are the suitable tool and we do not need the capability over-
hang from a generative model. Second, this size-requirement for good
generators makes them less accessible and harder to handle on a hard-
ware level. All BERT models used in this paper can be fine-tuned on a
free GPU from Google Colab, as they are relatively “small” with around
214 million parameters (P. He et al., 2021, p. 8). “Small” generators
tend to have multiple billion parameters and can require multiple GPUs
for fine-tuning. Despite these limitations, we believe that generative
models have great potential for social science applications, especially
beyond text classification. Moreover, for both generative models and
BERT-NLI, varying the formulation of the instructions (prompts) is an
important avenue for optimization (essentially a hyperparameter), which
we did not investigate in this study due to computational limitations.
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We leave analyses of generative models to future work.

Second, we have analysed the problem of bias in fine-tuning data
but did not analyse issues of bias in pre-training data. There is an
established literature on bias in pre-trained models (Bender et al., 2021;
X. Wang et al., 2022) as well as in NLI data (Gururangan et al., 2018)
from the NLP fairness community. Our paper focuses on group-based
biases in the fine-tuning data that are relevant for comparative social
scientists and validity.

Third, we used test-set validation as the main validation procedure.
Several other types of validation exist that are useful for validation for
specific case-studies (content validation, correlation validation, hypothe-
sis validation), but are less suitable for comparative validation and bias
analyses across a wider array of datasets. Several additional methods
like feature importance analysis or manual error analysis exist and are
particularly suitable for understanding individual datasets and models
more deeply. As discussed in section 2, validation is a comprehensive
process that needs to be adapted to each specific use-case. We focus on
test-set validation as it is the gold standard procedure for validating su-
pervised classifiers, it enables comparisons across multiple datasets, and
we complement this analysis with the binomial mixed-effect regression
as an additional statistical test.

4.6 Conclusion

This paper investigates the effect of group-based biases in machine
learning training data on measurement validity. We show that all types
of classifiers learn group-based biases. On average, the effects are however
relatively small across 9 groups and 4 datasets with small and highly
biased training sets. A classical logistic regression sees its F1 macro
performance drop by 2.3 percentage points when trained on highly biased
data instead of random data and its probability of making an error on
groups which it has not seen during training increases from 35.8% to
40% (0.84 odds ratio). BERT-base’s test-set performance drops by 1.7%
F1 macro when trained on biased data and its probability of making an
error on groups it has not seen during training increases from 26% to
31.1% (0.78 odds ratio). BERT-NLI’s performance drops by only 0.4%
F1 macro when trained on biased data and its probability of making
an error on groups it has not seen during training increases only from
18.5% to 19.3% (0.95 odds ratio). We note that these effects are only
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averages and the bias effects are stronger for cases where language is
very different between groups (especially for shifts from legal to speech
language and partly between countries) and smaller for other groups
(political parties or time periods).

We argue that the high level of robustness against bias and test-
set validity of instruction-based BERT-NLI is due to two important
characteristics. First, on an algorithmic level, instruction-based models
do not need to delete and randomly re-initialize task-specific parameters,
making them more robust. Second, they can ingest definitions of the
task and concept of interest as plain text instructions, making them less
dependent on (group-specific) language patterns in the training data
and making it easier for them to learn the task and concept of interest.

Note that this paper only analyses advantages and limitations of
different classifiers. When using supervised machine learning as a mea-
surement tool for a specific substantive case-study, researchers should
adhere to general good practices to ensure the validity of their mea-
surements. Most of these good practices go well beyond the choice of
classifier and could not be discussed in this paper. This starts with a
proper definition of the concept of interest and task; to good training of
annotators for creating high quality training data; to sampling repre-
sentative and balanced train and test data; to aggregating classification
predictions on individual texts into meaningful measurements.

What do our results mean for researchers in practice? First, for
research projects that use text classification for measurement, we recom-
mend using the instruction-based BERT-NLI models, especially when
little training data is available. We assume that the bias penalty de-
creases as more and more balanced data becomes available and standard
BERT-base models become a more viable option (based on Laurer et
al., 2023a). For researchers who are new to these methods, we rec-
ommend following a workshop by the first author which also includes
copy-pasteable Juypter notebooks with reusable training code and a
4 hour video with additional explanations.!” Second, we recommend
paying attention to group-imbalance in addition to class-imbalance both
in the training and test data. If a high quality test dataset exists,
researchers can gain confidence in their models by calculating disaggre-
gated metrics for all substantially relevant groups to identify potential
model biases. Researchers should iteratively improve their data if they

Yhttps://github.com/MoritzLaurer/summer-school-transformers-2023/
tree/main
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identify issues.

Lastly, as comparative researchers are often faced with situations
where it is difficult to collect sufficient data for all relevant groups,
we hope that our empirical analysis provides researchers with some
optimism that, even when the training data is biased, instruction-based
language models are good measurement tools. As language models
improve and software and hardware become more accessible over the
years, we believe that instruction-based language models will become
an increasingly useful tool for social scientists to help them do their job:
try and explain complex social phenomena with good measurements.

Appendix

The appendix is available online at https://osf.io/2t4cd.
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Chapter 5

Building Efficient Universal
Classifiers with Natural
Language Inference

Abstract. Generative Large Language Models (LLMs) have become
the mainstream choice for fewshot and zeroshot learning thanks to the
universality of text gemeration. Many users, however, do not need the
broad capabilities of generative LLMs when they only want to automate
a classification task. Smaller BERT-like models can also learn univer-
sal tasks, which allow them to do any text classification task without
requiring fine-tuning (zeroshot classification) or to learn new tasks with
only a few examples (fewshot), while being significantly more efficient
than generative LLMs. This paper (1) explains how Natural Language
Inference (NLI) can be used as a universal classification task that follows
similar principles as instruction fine-tuning of generative LLMs, (2)
provides a step-by-step guide with reusable Jupyter notebooks for building
a universal classifier, and (3) shares the resulting universal classifier that
is trained on 33 datasets with 389 diverse classes. Parts of the code we
share has been used to train our older zeroshot classifiers that have been
downloaded more than 65 million times via the & Hugging Face Hub as
of March 2024. Our new classifier improves zeroshot performance by

9.4%.

Preprint published as: Laurer, M., van Atteveldt, W., Casas, A., & Welbers,
K. (2023). Building Efficient Universal Classifiers with Natural Language Inference
(arXiv:2312.17543). arXiv. https://doi.org/10.48550/arXiv.2812.17543
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5.1 Introduction

Over the past year, generative models have taken both academia and
public attention by storm. The main appeal of text generation is that it is
so universal, that almost any other text-related task can be reformulated
as a text generation task (Radford et al., 2019; Raffel et al., 2020).
Especially when text generators are massively scaled up and tuned on
human instructions, they acquire impressive capabilities to generalise
to new tasks without requiring task-specific fine-tuning (Chung et al.,
2022; OpenAl, 2023b; Ouyang et al., 2022; Sanh et al., 2022; Touvron et
al., 2023). Since the utility of these generative Large Language Models
(LLMs) has become evident, large amounts of intellectual, financial and
energy resources are being invested in improving and scaling generative
LLMs.

Given that the resource requirements for training and deploying
generative LLMs are prohibitive for many researchers and practitioners,
this paper investigates other types of universal models, that make a
different trade-off between resource requirements and universality. The
literature has developed several other universal tasks that cannot solve
generative tasks (summarization, translation etc.), but can solve any
classification task with smaller size and performance competitive with
generative LLMs (Schick & Schiitze, 2021b; H. Xu et al., 2023).

Building better classifiers is particularly important in the social
sciences, where classification is often used as a measurement tool. Social
science researchers need models that are easy to use, while producing
valid measurements across all classes and social groups of interest. Uni-
versal classifiers can be an important addition to this toolkit, as they
can either circumvent the need for fine-tuning altogether (zeroshot classi-
fication) or they can be a base model for robust task-specific fine-tuning
with less data (Laurer et al., 2023a; Laurer, Van Atteveldt, Casas, &
Welbers, 2023c).

The principle of universal classifiers is similar to generative models: A
model is trained on a universal task, and a form of instruction or prompt
enable it to generalize to unseen classification tasks. While several
efficient approaches to universal classification exist (Bragg, Cohan, Lo,
& Beltagy, 2021; Ma, Yao, Lin, & Zhao, 2021; Schick & Schiitze, 2021a;
Sun, Zheng, Hao, & Qiu, 2022; Xia et al., 2022; H. Xu et al., 2023;
Y. Yao et al., 2022), this paper focuses on guidance for one approach:
Natural Language Inference. Several papers have used the universal NLI
task for zero- and fewshot classification, but stopped short of mixing
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Figure 5.1: Illustration of universal classification with BERT-NLI based
on Laurer et al. (2023a)

Interpretation
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NLI data with multiple other non-NLI datasets to build more universal
classifiers (Laurer et al., 2023a; S. Wang et al., 2021; Yin et al., 2019,
2020).

The main contribution of this paper are: (1) easy-to-use universal
classifiers trained on 5 NLI datasets and 28 non-NLI datasets with
389 diverse classes, improving zeroshot performance by 9.4% compared
to NLI-only models; (2) a step-by-step guide with Juypter notebooks
enabling users to train and adapt their own universal classifiers.
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Figure 5.2: Example for using the resulting universal classifiers in the
¥ zeroshot pipeline

from transformers import pipeline

text = "Angela Merkel is a politician in Germany and leader of the CDU"
hypothesis_template = "This text is about {}"
classes_verbalized = ["politics", "economy", "entertainment", "environment"]

model_name = "MoritzLaurer/deberta-v3-large-zeroshot-vl.1-all-33"
classifier = pipeline("zero-shot-classification", model=model_name)
classifier(text, classes_verbalized, hypothesis_template=hypothesis_template)

# output: {'labels': ['politics', 'entertainment', 'ecomomy', 'environment'],
'scores': [0.99, 0.0, 0.0, 0.0]}

5.2 NLI as a universal task

The Natural Language Inference (NLI) task! is defined as recognising if
the meaning of one text (the hypothesis) is entailed in another text (the
premise). For example, the hypothesis “The EU is not trustworthy” is
entailed in the premise “The EU has betrayed its partners during the
negotiations on Sunday”. To create NLI datasets, workers are presented
with a text (the premise) and are tasked with writing a hypothesis that
is either clearly true given the premise (entailment), clearly false given
the premise (contradiction), or that might be true or false but is not
clearly entailed or a contradiction (neutral). Several large scale NLI
datasets with hundreds of thousands of unique hypothesis-premise pairs
for these three classes have been created by crowd workers or language
models (Bowman, Angeli, Potts, & Manning, 2015; Conneau et al., 2018;
Liu, Swayamdipta, Smith, & Choi, 2022; Nie et al., 2020; Parrish et al.,
2021; Williams et al., 2018). For simplicity and to increase universality,
the task can be simplified into a binary entailment vs. not-entailment
task by merging the ‘neutral’ and ‘contradiction’ labels (Yin, Radev, &
Xiong, 2021).

This binary NLI task is universal, because any text classification task
can be reformulated into this entailment vs. not-entailment decision
through label verbalisation (see figure 5.1). Take topic classification as

'An older but more expressive name for the task is RTE, Recognising Textual
Entailment (Dagan et al., 2006)
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an example. The task could be to determine if the text “We need to
raise tariffs” belongs to the topic “economy” or “welfare”. From an NLI
perspective, we can interpret the text “We need to raise tariffs” as the
premise and verbalise the topic labels in two topic hypotheses: “This text
is about economy” and “This text is about welfare”. The classification
task reformulated as an NLI task then consists of determining which of
the two topic hypotheses is more entailed in the text of interest (premise).
In different words: Which hypothesis is more consistent with the text of
interest?

A model fine-tuned on NLI data (e.g. “BERT-NLI”) can then be
used to test any hypothesis formulated by a human against any text
of interest (premise). For each individual hypothesis-premise pair, an
NLI models will output a probability for entailment and not-entailment.
To choose the most probable topic, we can select the hypothesis with
the highest entailment score. Following the same procedure, any other
text classification task can be reformulated as an NLI task, from stance
detection, sentiment classification to factuality classification (see figure
5.1). Any class can be verbalised as a hypothesis (similar to the prompt
of a generative LLM) and can then be tested against any text of interest.?

The main disadvantage of NLI for universal classification is that it
requires a separate prediction for each of N class hypotheses, creating
computational overhead for tasks with many classes. The main advantage
is that identifying a new class only requires verbalising it as a hypothesis
and passing it to an NLI model without the need of fine-tuning a new
task-specific model from scratch (zeroshot classification). The most
prominent implementation of this approach is probably the Hugging
Face ZeroShotClassificationPipeline (see figure 5.2) which uses this
NLI-based approach under the hood (Wolf et al., 2020).® The models
created in the paper are designed to be directly compatible with this
pipeline.

5.3 A guide to building a universal classifier

In this guide we explain how this type of universal classifier is built.
Each step is accompanied by a Jupyter notebook available on GitHub

*Note that an NLI model will always only do one task (NLI) just like a GPT
model can only predict the next token. These tasks are universal because any other
specific task can be reformatted into these more general tasks.

3https://huggingface.co/docs/transformers/v4.36.1/main_classes/
pipelines
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that implements each step end-to-end.* The main steps are:

1. Dataset preprocessing and harmonization
Automatic data cleaning (optional)
Hypothesis formulation and formatting
Training and evaluation

Visualisation of results

U N

Guidance for using the resulting model is provided in section 4.

5.3.1 Data selection, preprocessing and harmonization

We use two main types of data to train our universal classifier: Five NLI
datasets and 28 other classification datasets.

data-harmonization-nli.ipynb

First, we use a set of established NLI datasets: MNLI (Williams et al.,
2018), ANLI, FEVER-NLI (Nie et al., 2020), WANLI (Liu et al., 2022),
Ling-NLI (Parrish et al., 2021).> Each dataset contains tens of thou-
sands of unique hypothesis-premise pairs classified into one of the three
classes “entailment”, “neutral”, “contradiction”. We merge the “neutral”
and “contradiction” class into one “not-entailment” class to obtain the
universal binary format. As figure 5.1 shows, only the probabilities for
the “entailment” class are relevant for universal classification. We merge
all five NLI datasets into one harmonized dataset with three columns:
“premise”, “hypothesis”, “label”.

The resulting merged ~885000 hypothesis-premise pairs would be
enough to train a decent NLI model capable of zeroshot classification.
The NLI datasets were, however, not created with zeroshot classification
in mind. Crowd workers were instructed to write hypotheses that are
entailed, contradictory or neutral towards a text, which led to a wide
range of hypothesis-premise pairs. They were not specifically instructed
to create data for typical classification tasks such as identifying topics,
sentiment, stances, emotions, toxicity, factuality etc. which users might
be interested in in practice (e.g. “This text is about topic X”). To
improve performance on these types of tasks, we therefore add a second
collection of standard non-NLI classification datasets reformatted into
the NLI format.

‘https://github.com/MoritzLaurer/zeroshot-classifier

®We exclude the large SNLI dataset Bowman et al. (2015) due to known issues of
data quality.
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data-harmonization-huggingface.ipynb

We choose 28 popular non-NLI datasets with diverse classification tasks
linked to sentiment, emotions, intent, toxicity, bias, topics, factuality,
spam etc. with 387 classes in total. We selected most datasets based
on their popularity (downloads) on the Hugging Face Hub. We also
add some non-NLI datasets that are not available on the Hugging Face
hub and create separate preprocessing notebooks for each of them (e.g.
1-data-harmonization-manifesto.ipynb). The full list of datasets
with information on tasks, licenses and data quality is available in our
dataset overview file.

For creating this kind of collection, we strongly recommend manually
inspecting each dataset and the corresponding paper to understand data
quality and the underlying task. Depending on the datasets, the prepro-
cessing steps can include: removing NAs, deduplication, downsampling
majority classes, merging texts (e.g. titles with text bodies), converting
continuous labels into simpler classes (e.g. star ratings to binary senti-
ment classes), removing texts with low certainty or annotator agreement,
splitting datasets with multiple implicit tasks into separate tasks, remov-
ing and renaming columns, and splitting the data into a 80-20 train-test
split if no test-set exists. As a result of these steps, each processed
dataset only has three harmonized column: “text”, “label text” (a word
expressing the meaning of each class), and “label_standard” (a number
for each class).

If readers want to improve the classifier on a specific domain or a
family of other tasks, they can add their datasets during this step.

5.3.2 Automatic data cleaning
data-cleaning.ipynb

Manual inspection of the non-NLI datasets reveal relevant quality issues
in many datasets. We therefore use the CleanLab library to remove texts
with a high probability of noise.” CleanLab provides automated means
for identifying noisy labels by embedding texts with a SentenceBERT
model, training a simple logistic classifier on these embeddings and
analysing prediction uncertainty and prediction overlaps between classes.

Shttps://github.com/MoritzLaurer/zeroshot-classifier/blob/main/
v1_human_data/datasets_overview.csv
"https://github.com/cleanlab/cleanlab
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Two relevant limitations of this process are that it can dispropor-
tionately remove minority classes and it probably does not work well
for very complex tasks. We therefore applied this automatic approach
to 25 tasks, but not to complex tasks like NLI or factuality detection.
This process removes roughly 17% (or ~135 000) texts with probable
misclassifications or label overlaps. We highly recommend readers to
inspect our cleaning notebook to get a feeling for the amount of noise
that is still present in established datasets.

As an additional measure to increase data quality and diversity in
the following script, we also radically downsample data for each non-NLI
dataset. We only take a sample of maximum 500 texts per class and
maximum 5000 texts per dataset to avoid overfitting to a specific large
dataset. This leads to 51731 non-NLI texts (down from more than one
million texts) that will be merged with the ~885000 NLI texts in the
following step. We could have added hundreds of thousands of additional
texts, but our experience indicates that data diversity and quality is
more important than quantity. Moreover, our objective is not to build
a classifier that beats (and overfits to) a benchmark, but to build a
classifier that generalizes well.

5.3.3 Hypothesis formulation and NLI formatting
data-formatting-universal-nli.ipynb

We now need to transform the (cleaned) non-NLI datasets into the
universal NLI format. First, we need to verbalise each class as a class hy-
pothesis. For this label verbalisation step we read the underlying paper
or annotator instructions for each dataset and express them as a class
hypothesis. For a binary sentiment classification task on app reviews, for
example, the hypotheses could be “This app review text expresses posi-
tive sentiment” and “This app review text expresses negative sentiment”.
We add information on the domain or type of dataset (“app review
text”) in some hypotheses, to help the model differentiate between texts
from the same task type (e.g. binary sentiment classification) that come
from different domains or datasets (e.g. app reviews vs. movie reviews
vs. product reviews). This helps reduce negative transfer risks across
datasets. As a general rule, we try to formulate the hypotheses in simple
every-day language and avoid complex academic definitions, thinking
of the model a bit like a simple crowd worker. Each class hypothesis is
linked to its corresponding class label in a dictionary. All our hypotheses
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are available in 3-data-formatting-universal-nli.ipynb.?

For each row in each non-NLI training dataset we now add a new
“hypothesis” column with the correct class hypotheses corresponding
to the respective text. Moreover, in a new “label” column, these text-
hypothesis pairs receive the label “0” for “entailment”. We then multiply
each text by two and pair the copied text with a random incorrect class
hypothesis and the label “1” for “not-entailment”. This multiplication
ensures that the model does not only learn that class hypotheses are
always true and it functions as a form of data augmentation. When we
rename the “text” column to “premise”, this dataset now has exactly
the same format as the NLI dataset with the columns “premise”, “hy-
pothesis”, “label” for binary entailment vs. not-entailment classification.
This conversion is implemented in the function format_nli_trainset.
We can now simply concatenate the non-NLI and the NLI training data.

The non-NLI test data needs to be formatted slightly differently.
During test-time, all class hypotheses for a task need to be tested on
each text to select the “most entailed” hypothesis. This means that
we need to multiply each test text by N for N classes, pairing the
text with all N possible class hypotheses in N rows. This conversion
is implemented in the function format_nli_testset. After this task-
specific multiplication, these test sets cannot be concatenated and they
need to be evaluated separately.

5.3.4 Training and evaluation
train-eval.ipynb

With the data fully cleaned and formatted, we can now start train-
ing. We can use any pre-trained transformer model as the founda-
tion. Since the only purpose of the model is classification, we dis-
card models with a decoder such as T5 or Llama-2 (Raffel et al.,
2020; Touvron et al., 2023). Among encoder-only models, we had
the best experience with DeBERTaV3 which is pre-trained with the
highly effective RTD objective and exists in multiple sizes and with
a multilingual variant (P. He et al., 2021). Processing and training
is implemented with Hugging Face Transformers. We use label2id
= {"entailment": O, "not_entailment": 1} for compatibility with
the ZeroShotClassificationPipeline; pad and truncate to a maxi-

8Research indicates that providing multiple different instructions (hypotheses) for
the same class can help increase generalisation (Sanh et al., 2022).
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mum length of 512 tokens; base hyperparameters on the recommended
fine-tuning hyperparameters in the appendix of the DeBERTaV3 pa-
per (P. He et al., 2021) and do not conduct a hyperparameter search
as it adds little value over the recommended hyperparameters in our
experience while adding complexity.

We fine-tune models with three different data compositions for eval-
uation: (1) one model trained on all datasets (deberta-v3-zeroshot-
v1.1-all-33); (2) one model trained on only the five NLI datasets as
a baseline representing previous NLI-only zeroshot models (deberta-
v3-nli-only); (3) 28 different models, each trained with all datasets,
except one non-NLI dataset is held out. This last group of models is
trained to test zeroshot generalisation to tasks the model has not seen
during training. For each of the 28 models, we take the performance
metric for the dataset that was held out in the respective training run.
Based on these 28 metrics, we know what the performance for each task
would be, if the model had seen all datasets, except the respective held
out dataset.

One training run on around 9000000 concatenated hypothesis-premise
pairs for 3 epochs takes around 5 hours for DeBERTaV3-base and 10
hours for DeBERTaV3-large on one A100 40GB GPU. Training and
evaluating all 30 models takes around 6 (base) or 15 (large) full days of
compute, mostly due to the 28 models trained for held-out testing.

We use balanced accuracy as our main evaluation metric (Buitinck
et al., 2013) as many of our datasets are class imbalanced and the
metric is easier to interpret than F1 macro. For evaluation on non-NLI
datasets, remember that rows have been multiplied with one row per
class hypothesis. The compute_metrics_nli_binary function handles
the calculation of metrics for these reformatted datasets.

deberta-v3-zeroshot-v1.1-all-33 is the model we recommend
for downstream use. The model is available in different sizes in our
zeroshot collection on the Hugging Face Hub.”

5.3.5 Visualisation and interpretation of results

viz.ipynb

The NLI-only classifier (deberta-v3-nli-only) is very similar to exist-
ing zeroshot classifiers on the Hugging Face hub. It can do all tasks to

“https://huggingface.co/collections/MoritzLaurer/zeroshot-classifiers
-6548b4££407bb19f£5c3ad6f
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Figure 5.3: Mean performance across 28 classification tasks.
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some extent, given it’s training on the universal NLI task. It performs
well on simple binary tasks such as sentiment classification, but struggles
on other tasks that are too dissimilar from standard NLI texts and have
more classes.

deberta-v3-zeroshot-v1.1-all-33 has seen up to 500 examples
for each class in each dataset. Only based on this small amount of data,
it achieves strongly improved performance across all tasks. This is in
line with prior research indicating that little, but good quality data is
necessary for language models to generalize well (Zhou et al., 2023).

deberta-v3-zeroshot-v1.1-heldout provides an indication of ze-
roshot performance for tasks the model has not seen during training.
We highlight two main insights: First, models trained with a mix of
NLI data and non-NLI data achieve overall better zeroshot performance
than the NLI-only model (+9.4% on average). Having seen different
zeroshot-style hypotheses helps the model generalize to other unseen
tasks and hypotheses (positive transfer). Second, there are a few cases
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of negative transfer. On a few datasets, the NLI-only model performs
better than deberta-v3-zeroshot-v1l.1-heldout, indicating that the
additional task-mix can make the model over- or underpredict a few
classes.

Overall, deberta-v3-zeroshot-v1.1-all-33 significantly outper-
forms the NLI-only model both on held-in and held-out tasks. Its
performance on datasets it has not seen during training can expected
to be around 9.4% higher than NLI-only models. Moreover, it can
simultaneously perform many different tasks it has seen during training
with even better performance. Detailed metrics are available in the
appendix and the model cards.'®

5.4 Reusing our models and code

We envisage three main ways in which our models and code can be
reused. First, users can directly use deberta-v3-zeroshot-v1l.1-all-
33 for zeroshot classification in just a few lines of code with the Hugging
Face ZeroShotClassificationPipeline (see code in figure 5.2). This should
work particularly well for tasks that are similar to one of the 33 datasets
and 389 classes we used for training, including many different topics,
sentiment, emotions, or types of toxicity.

Second, the models can be used as a base models to fine-tune a task-
specific classifier. Prior research shows that fine-tuning an NLI-based
classifier requires less training data and increases robustness compared
standard fine-tuning of DeBERTaV3-base (Laurer et al., 2023a; Le Scao
& Rush, 2021; Raman et al., 2023). Good performance can be achieved
with just a few hundred examples per class, requiring only some minutes
of fine-tuning on a free GPU (Laurer et al., 2023b). We provide code
examples for this approach in an online workshop.!!.

Third, researchers can modify our notebooks, for example by adding
more datasets for a specific domain and task family, and rerun the
improved pipeline to build a universal classifier that is better adapted to
their domain and tasks. While fine-tuning deberta-v3-zeroshot-v1.1-
all-33is recommended for individual tasks, rerunning the pipeline could
add value if researchers want to build a new universal model adapted to

https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-vi.1
-all-33

1See the notebook 4_tune_bert_nli.ipynb at https://github.com/
MoritzLaurer/summer-school-transformers-2023/tree/main
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a broader set of tasks or domains. We estimate that the final model can
be trained with a € 50 Google Colab Pro+ subscription.

In all three use-cases, making predictions with the resulting models
(inference) is highly efficient with cheap GPUs, but is also possible with
on a laptop CPU.

5.5 Limitations

We outline several limitations of this paper and invite readers to improve
on our implementation. First, while we have included 28 non-NLI
datasets, the diversity of these academic datasets is limited and they do
not cover the full diversity of classification use-cases users will need in
practice. All datasets are only in English. The instruction fine-tuning
literature for generative LLMs has shown the potential of using SotA
models like GPT-4 to generate diverse training data and distilling their
capabilities into much smaller models (Taori et al., 2023; Tunstall et al.,
2023). While many such datasets exist for generative tasks, hardly any
are available for encoder-only classifiers like BERT (Longpre, Hou, et
al., 2023; Longpre, Mahari, et al., 2023; Sileo, 2023). We assume that
smart LLM prompting could result in a more diverse dataset than our
collection and could further improve generalisation.

Second, the model comparisons are limited as we only compare
BERT-NLI models among each other. We do not compare classification
performance, inference speed, memory requirements, and costs to larger
generative LLMs or APIs.

Third, we assume that our data still contains a certain degree of
noise. Additional data cleaning techniques could be used, for example
discarding training data where the DeBERTa-v3 model still disagrees
with the label after fine-tuning or targeted manual inspection enabled
by active learning.

Fourth, an inherent limitation of NLI for zeroshot classification is
that each additional class requires an additional forward pass (prediction)
through the model. This makes the approach less suitable for tasks with
a high amount of classes. At the same time, even if multiple forward
passes are required, encoder-only models with only around a hundred
million parameters are still more efficient than decoder models with
multiple billion parameters while possibly being more accurate Schick
and Schiitze (2021b); H. Xu et al. (2023).

Fifth, we use the relatively old DeBERTa-v3 from November 2021
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(P. He et al., 2021), which misses relevant recent innovations like new
positional embeddings like RoPe or AliBi to enable longer context
windows (Press, Smith, & Lewis, 2022; Su et al., 2023). Unfortunately
we are not aware of a better encoder-only model and releases have
recently been dominated by larger generative decoder models.

Sixth, several other universal classification approaches exist that
were beyond the scope of this paper: PET, which combines masked-
language-modeling and label verbalisation (Schick & Schiitze, 2021a),
replaced-token-detection combined with prompts (Xia et al., 2022; H. Xu
et al., 2023; Y. Yao et al., 2022), question-answering (Bragg et al., 2021),
or next-sentence-prediction as an interesting self-supervised alternative
to NLI (Ma et al., 2021; Sun et al., 2022).

5.6 Conclusion and call for a new foundation
model

This paper explains how to use the Natural Language Inference task
to build a universal classifier and provides practical guidance to users.
Looking forward, we believe that there is significant room for improve-
ment by building upon the insights from generative LLM research for
more efficient classifiers.

First, generative LLMs gain their power by learning their universal
task (next-token-prediction) already during self-supervised pre-training
and not only during fine-tuning (a limitation of our models). It is
possible that universal self-supervised tasks exist for classification tasks
as well (or discriminative tasks more generally). The most promising
candidate is ELECTRA’s replaced-token-detection (RTD) objective
(Clark, Luong, Le, & Manning, 2020), which can make models with
only a few hundred million parameters perform comparably to models
with 1.5 billion parameters that are trained on the the less efficient
generative masked-language-modeling objective (P. He et al., 2021).
We hypothesize that the RTD objective could be supplemented with
a binary “original text” vs. “not-original text” objective, resulting in
a universal classification head similar to the universal “entailment” vs.
“not-entailment” task - without requiring supervision. H. Xu et al. (2023)
go in this direction, but did not experiment with a self-supervised task.

Second, a new foundation model trained on this task could then also
be trained with other more recent innovations, which existing encoder-
only models are currently lacking: grouped-query attention (Ainslie
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et al., 2023), flash attention (Dao, Fu, Ermon, Rudra, & Ré, 2022),
better positional embeddings like RoPe or AliBi to enable longer context
windows (Press et al., 2022; Su et al., 2023), and scaling pre-training data
and compute while only moderately scaling model size for inference-time
efficiency (Hoffmann et al., 2022).

Third, similar to generative LLMs, better instruction data could
make universal classifiers more useful. As discussed in the limitations
section, especially synthetic data from much larger generative LLMs
tailored to universal classifiers has the potential to flexibly teach efficient
classifiers more diverse and more practically relevant tasks. The creators
of the WANLI dataset have already demonstrated this potential with
GPT3 (Liu et al., 2022) and it is safe to assume that newer generators
will produce even better data.

These points would entail pre-training a new foundation model from
scratch, which requires large amounts of resources. We believe that such
a foundation model for text classification would be a useful addition to
the open-source ecosystem as the field has progress significantly since the
last encoder-only models were released and classification tasks constitute
a relevant share of both academic and practical applications for language
models.
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Appendix

The appendix is available in the online preprint: Laurer, M., van
Atteveldt, W., Casas, A., & Welbers, K. (2023). Building Efficient Uni-
versal Classifiers with Natural Language Inference (arXiv:2312.17543).
arXiv. https://doi.org/10.48550/arXiv.2312.17543

Additional metrics and details are also reported in the corresponding
model cards.'?

For details on all datasets used, see the overview table.!? To give
citation credit to the authors of all datasets, here is the full list of
dataset sources: Adams et al. (2017); Almeida, Hidalgo, and Yamakami
(2011); Burst et al. (2020); Casanueva, Temcinas, Gerz, Henderson, and
Vulié¢ (2020); Chatterjee, Narahari, Joshi, and Agrawal (2019); Davidson,
Warmsley, Macy, and Weber (2017); Faruqui and Das (2018); FitzGerald
et al. (2023); Gekhman, Herzig, Aharoni, Elkind, and Szpektor (2023);
Grano et al. (2017); Liu et al. (2022); Maas et al. (2011); Malo, Sinha,
Korhonen, Wallenius, and Takala (2014); Mathew et al. (2021); McAuley
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"?https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-vi.1
-all-33

3https://github.com/MoritzLaurer/zeroshot-classifier/blob/
a7934b8c6c9abal37764bb4e893dc34bd57587bc2/v1_human_data/datasets
_overview.csv
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Chapter 6

Conclusion

In this thesis, I investigated how recent innovations from the Natu-
ral Language Processing literature can help address common textual
measurement problems in the Computational Social Sciences. More
specifically, I showed how the instruction-based language model BERT-
NLI leads to better measurements created with text classification.

The uptake of texts classification and supervised machine learning as
a measurement tool was limited by several shortcomings of established
algorithms: (1) They require large amounts of balanced training data to
work well. Researchers, however, often only have limited resources for
creating training data and need to tailor data and models to their specific
research interest. (2) Older algorithms struggle with multilingual data.
Researchers, however, often need measurements that are equally valid
for different languages and cultures. (3) They are susceptible to learning
shortcuts and biased patterns from their training data, reducing the
validity of measurements across social groups. (4) Both older and newer
models can be difficult to use in practice, making them only accessible
to specialized researchers.

I show that combining language models with instructions provides a
solution to these problems. Instruction-based models reuse both prior
language and task knowledge (Lou et al., 2023; Ruder, 2019) by building
upon universal tasks from pre-training or pre-fine-tuning. They do not
need to delete and relearn task-specific parameters. Moreover, their
universal tasks enable them to ingest instructions as a third input besides
training texts and labels. These verbalised descriptions of tasks, also
called prompts, enable them to learn new tasks faster and more robustly.

I empirically tested these assumptions on one type of instruction-
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based model: BERT-NLI (Yin et al., 2020). While being limited to text
classification, its specific design for text classification makes it an efficient
and accessible choice compared to larger generative models (Schick &
Schiitze, 2021a; H. Xu et al., 2023). T developed my arguments on the
benefits of the instruction-based BERT-NLI model in four chapters.

Chapter 2 demonstrated the benefits of BERT-NLI on a wide range
of eight social science classification tasks. Across these eight tasks,
BERT-NLI fine-tuned on 100 to 2500 texts performs on average 10.7%
to 18.3% (percentage points) better than classical models that do not
use transfer learning. Results indicate that BERT-NLI fine-tuned on
500 texts achieves similar performance as classical models trained on
around 5000 texts. Moreover, I show that BERT-NLI also performs well
on imbalanced data.

Chapter 3 investigated the extent to which prior language and task
knowledge stored in the parameters of modern language models is useful
for enabling multilingual research. Moreover, I test to what extent these
algorithms can be fruitfully combined with machine translation. The
experiments are designed to determine which methods are most accurate,
practical, and valid in multilingual settings — three essential conditions
for lowering the language barrier in practice. The analysis is conducted
on two datasets with texts in 12 languages from 27 countries and shows
that instruction-based models can produce substantively meaningful
outputs. Our BERT-NLI model trained on only 674 or 1,674 texts in
only one or two languages can validly predict political party families’
stances towards immigration in eight other languages and ten other
countries.

Chapter 4 investigated the effects of group-specific biases in the
training data. This risk of hidden biases is particularly problematic
for (comparative) social science research, where researchers want to
compare different social groups (e.g. countries, parties, milieus) and
need models to perform equally well on all groups. To investigate this
issue, I conducted a comparative analysis across nine group types in
four datasets with three types of classification models, focusing on the
robustness of models against group-specific biases and the validity of their
outputs. I find that all types of models learn group-specific biases. On
average, however, the effects are surprisingly small. In particular when
models receive instructions as an additional input, they become more
robust against biases from the fine-tuning data and produce more valid
measurements across different groups. The instruction-based BERT-NLI
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sees its average test-set performance decrease by only 0.4% F1 macro
when trained on biased data and its error probability on groups it has
not seen during training increases only by 0.8%.

Chapter 5 demonstrated how BERT-NLI can be used as a universal
classifier. While generative LLMs are an increasingly popular universal
text analysis tool, I argue that users do not necessarily need the capability
overhang of a generative LLM when they only want to automate a
classification task. This chapter demonstrates that Natural Language
Inference (NLI) is a viable alternative universal task that can be used
to address any text classification task in a zeroshot manner with models
significantly smaller than generative LLMs. Each section of the chapter is
accompanied by a Jupyter notebook that implements each step required
to train such a universal classifier. The resulting model is trained on 33
datasets with 389 classes simultaneously, covering both NLI data and non-
NLI data reformatted into the universal NLI format. Its performance
at doing new classification tasks without having seen training data
(zeroshot classification) increases by 9.4% balanced accuracy compared
to NLI-only models. It can run for inference on a laptop and can be
reproduced in the browser for around 50 Euros on Google Colab.

In summary, my thesis demonstrated the added value of instruction-
based language models using the example of BERT-NLI. BERT-NLI can
significantly reduce the required amount of training data and handles
imbalanced data well; it can produce valid measurements in multilingual
settings; it is more robust against biases from group-specific language
patterns than classifiers without instructions; and I provide a range
of Jupyter notebooks and fine-tuned models to facilitate the use of
these models for settings with little or no training data. On the day of
submission of this thesis, my open-source BERT-NLI models have been
downloaded more than 65 million times.!

6.1 Discussion

My thesis has, however, several limitations and there are many research
directions that can further address different practical challenges.

First, my thesis only focused on one type of instruction-based model:
BERT-NLI. This was a conscious choice given that it is specialised in
text classification, the key task family for social science measurement.

L& https://huggingface.co/MoritzLaurer
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Generative instruction-based models also have great potential for sim-
plifying measurement beyond classification, but they were not covered
in this thesis given their accessibility issues in terms of size and costs
for academics during the time of writing. There are also other universal
tasks for instruction-based classification models that could have been
explored (see chapter 5, section 6).

Moreover, I did not investigate procedures for better training data
sampling and annotation. I mostly sampled randomly from existing
annotated datasets, but practitioners are normally faced with a raw
corpus in which specific unbalanced classes need to be identified. I
believe that two procedures have great potential for simplifying this pro-
cess. First, active learning can be an efficient means for sampling data
(Schroder & Niekler, 2020), especially in imbalanced settings (Miller et
al., 2020). Classifiers like BERT-NLI can be fruitfully combined with
active learning, as they provide decently calibrated uncertainty scores
with little or no training data. I have started combining BERT-NLI
with active learning for an open-source tutorial 2 , but more rigorous
experiments would be necessary to establish advantages and disadvan-
tages in different settings. Second, the creation of synthetic data with
large generative models is promising. Recent evidence suggests that
large language models like GPT-4 can create data that is of similar or
better quality as data created by crowd workers (Gilardi, Alizadeh, &
Kubli, 2023; X. He et al., 2023; Zheng et al., 2023). State-of-the-Art
LLMs can be used to annotate texts with good zeroshot performance or
they can be instructed to write new texts tailored to a specific research
question. This data can be used as training data for much smaller
models (“knowledge distillation”, Sanh, Debut, Chaumond, & Wolf,
2020; Taori et al., 2023). T demonstrate the value of synthetic data in a
blog post for practitioners outside of my thesis.?

Lastly, there are many risks associated with languages models which
are not discussed in my thesis. Only chapter 4 investigated the issue
of biases in training data, but many more risks exist. Besides measure-
ment tools, language models can also be tools for discrimination, mass
surveillance, disinformation, manipulation, or could become misaligned
autonomous agents (Bender et al., 2021; OpenAl, 2023a; Weidinger et al.,
2021). Moreover, the training and use of LLMs are very energy intensive.

’https://github.com/argilla-io/argilla/blob/61967367606724dfa8e0b25

d1ab2185232d59b73/docs/_source/tutorials/notebooks/deploying
-textclassification-colab-activelearning.ipynb

*https://huggingface.co/blog/synthetic-data-save-costs
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In the blog post mentioned above, for example, I demonstrate that an
analysis with GPT-4 can emit around 735 to 1100 kg CO2 equivalents,
while an analysis with a smaller BERT classifier only emits around 0.12
kg CO2. Interdisciplinary researchers should continue researching the
full spectrum of risks. Social scientists have a particularly important
role to play in researching hidden biases or misuse and propose practical
solutions both on a technical and a governance level (Irving & Askell,
2019).

6.2 Looking ahead

Given the speed at which language models and related technologies have
evolved in the past few years, it is important to look ahead and assess
how the landscape might change in the near to medium term. I started
my thesis in 2021, when generative LLMs were still mostly out of reach
for academics. Since 2023, anyone can use an LLM with a simple API
call, achieving impressive performance without having to think about
fine-tuning or hardware. How could measurement with language models
evolve in the coming three years?

First, deriving measurements from text will become dramatically
easier and new instruction-based models will play an essential role in
this development. The most prominent precursor for this is the GPT-4
API (OpenAl, 2023b). GPT-4 is probably already better than crowd
workers at most text annotation tasks, while being cheaper and easier to
interact with (Gilardi et al., 2023; X. He et al., 2023; Zheng et al., 2023).
I anticipate that instruction-based language models will soon be like on-
demand research assistants whose (artificial) intelligence can be bought
much more flexibly and cheaply than the intellectual labour of human
workers at similar or better performance. The complex task of fine-tuning
language models will become less important for many users and their
main interaction with models will be the iterative testing of instructions
and validation of outputs. Simple API calls or user interfaces will
significantly reduce the expertise required to use these artificial research
assistants. While the fine-tuning process might take weeks today, the
iterative prompting process might only take days. This will make the
creation of measurements from large text corpora dramatically easier
in the near to medium term. Future research will need to develop best
practices for using LLMs to avoid that their ease-of-use leads to an
erosion of good existing validation practices.
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Second, among instruction-based model types, especially generative
variants will open new possibilities to create measurements beyond
the classical categories of classification or scaling (Grimmer & Stewart,
2013). New methods for measurement could include: (a) exploratory
categorisation that is less restricted to a pre-defined set of classes than
supervised classification, but more directed than unsupervised clustering.
By writing instructions that specify a specific research interest, but do
not restrict the generative model to a set of categories, researchers will
be able to explore a new middle-ground between inductive and deductive
research. (b) New forms of scaling and numeric measurements will
emerge. While classification puts text into discrete categories, scaling
assigns texts a continuous numeric score, such as a positioning on an
ideological scale. Generative models are increasingly used to rate texts
with continuous numeric variables (Zheng et al., 2023). Social scientists
will be able to use this capability to create diverse continuous ratings of
texts and guide generative models to produce numeric ratings like degrees
of emotions, beliefs, or text quality (Wu, Nagler, Tucker, & Messing,
2023). Instructions could be used, for example, to implement new forms
of ideological scaling that is more strongly based on the researcher’s
interest and less dependent on potentially spurious patterns in the data.
(c) Generative models can be used for entirely new experimental designs,
such as using LLMs to simulate human samples or create controlled
experiments where people interact with a carefully prompted LLM
instead of researchers (Argyle et al., 2023).

Moreover, (d) generative models will help combine previously sep-
arated analysis steps into one unified framework. A key limitation of
most computational text analysis methods today is that a different
computational tool is required for each subtask in a larger analysis
(“atomization”, Baden et al., 2022). An analysis might, for example,
require identifying any politician mentioned in a text, extracting their
name strings, harmonizing these strings (e.g. “Dr. Merkel” and “the
leader of the CDU in 2014” to “Angela Merkel”), and determining the
stance towards each specific politician mentioned in the text. Estab-
lished text-as-data methods would require a complex chain of different
methods from named-entity-extraction, entity-linking, to separate stance
classifiers. Generative models can, in theory, solve this task in a uni-
fied conversational framework. A first instruction can ask the model
to extract all mentions of politicians in a structured list. A second
instruction can ask it to harmonise the list based on an existing list of
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names. A third instruction can ask it to output the stance towards each
person in structured JSON format. These instructions can build-upon
each other in a conversation, where later responses are conditioned on
previous responses. Combining the chat design of generative models
with “chains-of-thought” has great potential for text analyses (Wei et al.,
2023). While there are important challenges (cascading errors and the
need to validate each subtask), the universality of the text generation
task and the chat design of LLMs have great potential to overcome the
“Specialization before Integration” gap in text-as-data research (Baden
et al., 2022).

Third, as more analyses become possible, the value of raw data
that was previously too difficult to analyse will increase. The most
important frontier is probably multimodal research, where different
modalities like text, image, video, or audio are ingested simultaneously
by a multimodal language model. A prime use-case is social media
data, where the full meaning of a post can only be understood by
combining text, images, and audio. Over the past years, the machine
learning literature has been busy developing methods that can ingest
data in multiple modalities simultaneously (P. Xu, Zhu, & Clifton, 2023).
Several open-source models are available on the Hugging Face platform
that can be directly fine-tuned (Wolf et al., 2020) and APIs provide easy
ways to use generalist multimodal models (OpenAlI 2023). Large scale
data collection projects that collect (multimodal) data with these new
capabilities in mind and multimodal research in general will become
more important.

Fourth, as these methods and data become available, tooling and
methods education in the social sciences need to adapt (Van Atteveldt &
Peng, 2018). The most important stumbling block might be the lack of
programming education in the social sciences, especially in the Python
programming language. The R community in the social sciences has
built an amazing ecosystem for statistical data analyses, text-as-data
research, visualisation and more. In parallel, deep learning researchers
have built almost all recent innovations in Python and practitioners
have built an amazing ecosystem of libraries that make these innovations
easy to use. Uptake of these innovations is slowed down significantly,
not because the innovations are more difficult to use, but because they
are implemented in Python and computational social scientists tend to
be more comfortable in R.

There are several pathways that can make tools from the deep
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learning community more accessible for social scientists. (a) Teaching
of programming languages in the computational social sciences should
become more prominent and more diverse. Python should become
an equal alternative to R in social science textbooks and curricula to
enable students to make an informed decision about which language is
more suitable for their research. (b) New tools like GitHub Copilot or
ChatGPT will make it significantly easier to learn a new programming
language or tool. While in 2022, solving a problem in a new language
required skimming long documentation and finding suitable responses in
online fora, learners can now simply copy an error message into a chat
window and receive good quality responses tailored to their problem.
Moreover, code from one programming language can be translated
into another language with decent quality and these services will only
become better. (¢) APIs to use generalist models will make the choice
of programming language less relevant. APIs can be called in any
language and the outputs can then be processed in the language the
researcher is comfortable with. Overall, it has never been easier to learn
programming and to use advanced models. As programming becomes
both an increasingly relevant tool and an increasingly relevant subject
of study, social science education should invest more in empowering
students to understand and use these tools.

Fifth, compute infrastructure will (have to) become more accessi-
ble. For a relevant share of research projects, APIs will not be enough.
Researchers can now access advanced hardware for free or a small fee
in their browser via services like Google Colab and these services will
improve. For more compute intensive research, universities and public
bodies should cooperate and invest in public compute infrastructure. Co-
operative projects like the Dutch supercomputer Snellius are immensely
valuable for enabling research on newer models.

Lastly, despite the excitement about the capabilities of new LLMs, it
is essential to remember that creating valid measurements requires much
more than building machine annotators with human-level performance.
As discussed in chapter 4, four interdependent steps are required for
creating a valid measurement (Adcock & Collier, 2001): (1) conceptual-
izing a general background concept into a specific systematized concept;
(2) operationalizing the systematized concept in a meaningful indicator;
(3) scoring individual cases based on this operationalization (e.g. text
classification); (4) aggregating the individual scores into the indicator,
i.e. the final ‘measurement’ Today’s LLMs can support these steps
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individually if certain conditions are met: They can achieve human-
level performance for scoring individual texts, if the underlying concept,
data and instructions are meaningful; they can be expert assistants for
brainstorming on conceptualization and operationalization if prompted
properly; and they can assist in writing code for aggregation if the
input data is meaningful.* Reliably and validly combining these steps
to create a good measurement end-to-end, however, is still out of reach
for today’s best models.> Most importantly, even once a perfectly valid
measurement is created, it is still only a means to an end: understanding
and explaining society. After all, a good measurement will only be
one input variable in a broader explanatory model (Egami et al., 2022;
Grimmer et al., 2021; Wallach, 2018).

The coming years hold many exciting research opportunities for in-
terdisciplinary research between machine learning and the social sciences.
I hope that many researchers will explore how these new tools can help
solve different practical problems in research and beyond. As language
models establish themselves as a valuable addition to our toolbox, differ-
ent disciplines will learn more about their opportunities and limitations.
I hope that my thesis made a contribution to this endeavour.

“Tmplementing these steps is not only a question of capability or intelligence, but
also of research interest and values. Interests and values will always remain contested
and navigating them will remain an important challenge for human experts.

For a machine learning system to start automating scientific research, it needs
the ability to plan multiple complex steps and act on each step without cascading
errors. These types of agentic language model systems are an active area of research
that is already receiving dramatic investments with initial promising results (Mialon,
Dess, et al., 2023; Nakano et al., 2022; Qin et al., 2023; Schick et al., 2023; S. Yao et
al., 2023). At least today’s systems are, however, still incapable of relatively simple
multi-step chains of planning and action (Mialon, Fourrier, et al., 2023). For the
purpose of measurement, today’s best language models are not much more than
(accurate and scalable) text analysis machines. It is reasonable to expect, however,
that their capabilities will increase dramatically in the short to medium term.
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